搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透明导电氧化物CuScO2的密度泛函理论研究

方志杰 莫曼 朱基珍 杨浩

引用本文:
Citation:

透明导电氧化物CuScO2的密度泛函理论研究

方志杰, 莫曼, 朱基珍, 杨浩

Density functional theory study on transparent conductive oxide CuScO2

Fang Zhi-Jie, Mo Man, Zhu Ji-Zhen, Yang Hao
PDF
导出引用
  • 本文利用基于第一性原理的广义梯度近似方法分析研究透明导电氧化物CuScO2能带结构、态密度和杂质能级. 计算结果表明, CuScO2的价带区主要由Cu的3d态和O的2p态构成, 而导带区主要由Sc的3d态组成. 在进行+U修正之后, 随着U参量的增加, CuScO2的导带区发生分裂导致导带扩大, 带隙也随之扩大, 表明+U计算能较好地改进CuScO2带隙值; 本文还比较分析了各种掺杂元素在CuScO2的杂质能级, 发现Mg原子替位掺杂Sc能有效改善CuScO2的 p型导电性能.
    Using the first-principle method within the generalized gradient approximation, in this paper we study the band structure, state density and doping level of transparent conductive oxide CuScO2. The calculated results show that the valence band of CuScO2 is composed mainly of 3d of Cu, and 2p of O; while the conduct band is comprised mainly of 3d of Sc. Through the +U correction, with the increase of the value of U, the conduct band of CuScO2 becomes split, and results in the enlarged band gap, which shows that the +U correction can improve the band gap of CuScO2. By comparing all kinds of dopant level in CuScO2, it found that the substitution of Mg for Sc can effectively improve the p-type conductivity in CuScO2.
    • 基金项目: 国家自然科学基金(批准号: 11147195)、 广西理工科学实验中心经费(批准号: LGZXKF201204)和广西教育厅科研项目(批准号: 200103YB102)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11147195), Guangxi Experiment Centre of Science and Technology (Grant No. LGZXKF201204), and the Science Plan Projects of Guangxi Provincial Education Department (Grant No. 200103YB102).
    [1]

    Lewis B G and Panine D C 2000 Mater. Res. Bull. 25 22

    [2]

    Wang Z G, Zhang Y, Wen Y H and Zhu Z Z 2010 Acta Phys. Sin. 59 2051 (in Chinese) [王志刚, 张杨, 文玉华, 朱梓忠 2010 59 2051]

    [3]

    Deng B, Sun H Q, Guo Z Y and Gao X Q 2010 Acta Phys. Sin. 59 1212 (in Chinese) [邓贝, 孙慧卿, 郭志友, 高小奇 2010 59 1212]

    [4]

    Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H 1997 Nature 389 939

    [5]

    Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H 2000 J. Appl. Phys. 88 4159

    [6]

    Nie X, Wei S H, Zhang S B 2002 Phys. Rev. Lett. 88 066405

    [7]

    Yanagi H, Kawazoe H, Kudo A, Yasukawa M, Hosono H 2000 J. Electroceram 4 427

    [8]

    Katayama-Ylshida H, Koyanagi T, Funashima H, Harima H, Yanase A 2003 Solid. State.Commun. 126 135

    [9]

    Koyanagi T, Harima H, Yanase A, Katayama-Yoshida H 2003 J. Phys. Chem. Solid. 64 144

    [10]

    Hamada I, Katayama-Yoshida H 2003 Physica B 376 808

    [11]

    Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M, Hirano M 2001 J. Appl. Phys. 89 1790

    [12]

    Yanagi H, Hase T, Ibuki S, Ueda K, Hosono H 2001 Appl. Phys. Lett. 78 1583

    [13]

    Kakehi Y, Satoh K, Yotsuya T, Masuko K, Ashida A 2007 J. Appl. Phys. 46 4228

    [14]

    Ingram B J, Harder B J, Hrabe N W 2004 Chem. Mater 16 5623

    [15]

    Fang Z J, Shi L J, Liu Y H 2008 Chin. Phys. B 17 4279

    [16]

    Fang Z J, Shi L J 2008 Phys. Lett. A 372 3759

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298

    [19]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [22]

    Wei S H 2004 Comput. Mat. Sci. 30 337

    [23]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 964

    [24]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [25]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. U.S.A 30 244

    [26]

    Doumerc J P, Ammar A, Wichainchai A, Pouchard M, Hagenmuller P 1987 J. Phys. Chem. Solids 48 37

  • [1]

    Lewis B G and Panine D C 2000 Mater. Res. Bull. 25 22

    [2]

    Wang Z G, Zhang Y, Wen Y H and Zhu Z Z 2010 Acta Phys. Sin. 59 2051 (in Chinese) [王志刚, 张杨, 文玉华, 朱梓忠 2010 59 2051]

    [3]

    Deng B, Sun H Q, Guo Z Y and Gao X Q 2010 Acta Phys. Sin. 59 1212 (in Chinese) [邓贝, 孙慧卿, 郭志友, 高小奇 2010 59 1212]

    [4]

    Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H 1997 Nature 389 939

    [5]

    Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H 2000 J. Appl. Phys. 88 4159

    [6]

    Nie X, Wei S H, Zhang S B 2002 Phys. Rev. Lett. 88 066405

    [7]

    Yanagi H, Kawazoe H, Kudo A, Yasukawa M, Hosono H 2000 J. Electroceram 4 427

    [8]

    Katayama-Ylshida H, Koyanagi T, Funashima H, Harima H, Yanase A 2003 Solid. State.Commun. 126 135

    [9]

    Koyanagi T, Harima H, Yanase A, Katayama-Yoshida H 2003 J. Phys. Chem. Solid. 64 144

    [10]

    Hamada I, Katayama-Yoshida H 2003 Physica B 376 808

    [11]

    Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M, Hirano M 2001 J. Appl. Phys. 89 1790

    [12]

    Yanagi H, Hase T, Ibuki S, Ueda K, Hosono H 2001 Appl. Phys. Lett. 78 1583

    [13]

    Kakehi Y, Satoh K, Yotsuya T, Masuko K, Ashida A 2007 J. Appl. Phys. 46 4228

    [14]

    Ingram B J, Harder B J, Hrabe N W 2004 Chem. Mater 16 5623

    [15]

    Fang Z J, Shi L J, Liu Y H 2008 Chin. Phys. B 17 4279

    [16]

    Fang Z J, Shi L J 2008 Phys. Lett. A 372 3759

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298

    [19]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [22]

    Wei S H 2004 Comput. Mat. Sci. 30 337

    [23]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 964

    [24]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [25]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. U.S.A 30 244

    [26]

    Doumerc J P, Ammar A, Wichainchai A, Pouchard M, Hagenmuller P 1987 J. Phys. Chem. Solids 48 37

  • [1] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展.  , 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [2] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型.  , 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [3] 刘欢, 李公平, 许楠楠, 林俏露, 杨磊, 王苍龙. Cu离子注入单晶TiO2微结构及光学性质的模拟研究.  , 2016, 65(20): 206102. doi: 10.7498/aps.65.206102
    [4] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应.  , 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [5] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算.  , 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [6] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. Fe, S共掺杂SnO2材料第一性原理分析.  , 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [7] 陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡. 半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质.  , 2012, 61(12): 127103. doi: 10.7498/aps.61.127103
    [8] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响.  , 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [9] 马小凤, 王懿喆, 周呈悦. a-Si ∶H/SiO2多量子阱材料制备及其光学性能和微结构研究.  , 2011, 60(6): 068102. doi: 10.7498/aps.60.068102
    [10] 逯瑶, 王培吉, 张昌文, 蒋雷, 张国莲, 宋朋. 第一性原理研究In,N共掺杂SnO2材料的光电性质.  , 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [11] 于峰, 王培吉, 张昌文. Al掺杂SnO2 材料电子结构和光学性质.  , 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [12] 万文坚, 姚若河, 耿魁伟. Mg和Zn掺杂CuAlS2电子结构的分析.  , 2011, 60(6): 067103. doi: 10.7498/aps.60.067103
    [13] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响.  , 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [14] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [15] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算.  , 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [16] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质.  , 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [17] 邵明珠, 罗诗裕. 正弦平方势与带电粒子沟道效应的能带结构.  , 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [18] 邬云文, 海文华, 蔡丽华. Paul阱中一维两离子系统的能带结构.  , 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
    [19] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构.  , 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [20] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究.  , 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
计量
  • 文章访问数:  6268
  • PDF下载量:  653
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-30
  • 修回日期:  2012-06-17
  • 刊出日期:  2012-11-05

/

返回文章
返回
Baidu
map