搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光反馈诱发长波长垂直腔面发射激光器低功耗偏振开关

王小发 吴正茂 夏光琼

引用本文:
Citation:

光反馈诱发长波长垂直腔面发射激光器低功耗偏振开关

王小发, 吴正茂, 夏光琼

Polarization switching with low power consumption induced by optical feedback in long-wavelength vertical-cavity surface-emitting lasers

Wang Xiao-Fa, Wu Zheng-Mao, Xia Guang-Qiong
PDF
导出引用
  • 基于扩展的自旋反转模型, 对光反馈诱发下长波长垂直腔面发射激光器中的低功耗偏振开关进行了理论研究. 研究表明: 长波长垂直腔面发射激光器在自由运行下未能获得的偏振开关现象, 可以通过引入中等强度的偏振旋转光反馈来实现. 对比强弱两种不同的线性色散效应, 发现了一些有趣的现象: 弱线性色散条件下更易于在低注入电流下获得偏振开关, 并且产生偏振开关所需的反馈强度具有更大的调控范围; 强色散效应中未能始终获得偏振开关, 会出现两模共存区, 并且偏振开关出现的注入电流值较高. 同时, 观察到的偏振模跳变和多偏振开关现象类似于短波长垂直腔面发射激光器, 因而证实这两类激光器在偏振开关的本质规律上是相似的. 此外, 还对长波长垂直腔面发射激光器不易在低注入电流下获得偏振开关的原因进行了分析, 并给出了合理的解释.
    The polarization switching (PS) characteristics of vertical cavity surface emitting lasers(VCSELs) have received sustained attention for the past years. With the development of manufacturing technology, the performances of 1550 nm VCSELs have been improved, however the researches on the PS of 1550 nm VCSELs are relatively inadequate for the PS characteristics in the long-wavelength VCSELs may have wide application prospects in optical information processing and optical communications. In this paper, based on the extended spin-flip model (SFM), we theoretically investigate the PS with low power consumption induced by optical feedback in long-wavelength VCSELs. Results show that the PS, which is failed to realize in free-running long-wavelength VCSELs, can be achieved by introducing a moderate-strength polarization-rotation optical feedback. By comparing two different linear dispersion effects, some interesting phenomena have been found. For weak linear dispersion, the PS is relatively easy to realize for a low injection current level, and the range of feedback strength used to control the PS is wide. However, for strong dispersion effect, the PS cannot be obtained all the time since two mode-coexisting zones will appear, and the value of injection current where the PS happens is relatively high. Meanwhile, as observed in short-wavelength VCSELs, the polarization mode hopping and multiple PS have also been found in long-wavelength VCSELs, indicating that the physics nature thet induces the PS is similar for both long and short wavelength VCSELs. In addition, because the PS in long-wavelength VCSEL is more difficult to realize as compared with that in short-wavelength VCSELs, reasonable analyses and explanations may be as follows: since the linear dispersion effect in 1550 nm-VCSEL is much stronger than that of short wavelength VCSEL, the frequency difference between the two linear polarization modes is up to 60 GHz (or 0.48 nm), thus leading to the decrease of the correlation between two linear polarization modes. As a result, it is relatively difficult to obtain the PS phenomenon at low injection current level in long-wavelength VCSEL; while using suitable polarization-rotated optical feedback can partially compensate the deficiency of this correlation. We believe that the results obtained in this work will be helpful in investigation of low power consumption for all optical buffers by using long-wavelength VCSELs.
      通信作者: 吴正茂, zmwu@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61178011, 61275116, 11304409, 61475127, 61575163)和重庆市自然科学基金(批准号: CSTC2013icyjA40004)资助的课题.
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178011, 61275116, 11304409, 61475127, 61575163), and the Natural Science Foundation of Chongqing City, China (Grant No. CSTC2013icyjA40004).
    [1]

    Cao T, Xu C, Xie Y Y, Kan Q, Wei S M, Mao M M, Chen H D 2013 Chin. Phys. B 22 024205

    [2]

    Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese) [王小发 2013 62 104208]

    [3]

    Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B 26 160

    [4]

    Iga K 2000 IEEE J. Select. Top. Quantum Electron. 6 1201

    [5]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [6]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [7]

    Regalado J M, Miguel M S, Abraham N B, Prati F 1996 Opt. Lett. 21 351

    [8]

    Balle S, Tolkachova E, Miguel M S, Tredicce J R, Regalado J M, Gahl A 1999 Opt. Lett. 24 1121

    [9]

    Koyama F 2006 J. Light. Technol. 24 4502

    [10]

    Muller M, Hofmann W, Grundl T, Horn M, Wolf P, Nagel R D, Ronneberg E, Bohm G, Bimberg D, Amann M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1158

    [11]

    Masoller C, Abraham N B 1999 Appl. Phys. Lett. 74 1078

    [12]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 J. Opt. Soc. Am. B 24 1276

    [13]

    Zhang W L, Pan W, Luo B, Wang M Y, Zou X H 2008 IEEE J. Sel. Top. Quantum Electron. 14 889

    [14]

    Xiang S, Pan W, Yan L, Luo B, Zou X, Jiang N, Wen K 2010 J. Opt. Soc. Am. B 27 2512

    [15]

    Chen J J, Xia G Q, Wu Z M 2015 Chin. Phys. B 24 024210

    [16]

    Kaplan A B 2007 Ph. D. Dissertation (South Hadley: Mount Holyoke College)

    [17]

    Hitoshi K 1997 IEEE J. Sel. Top. Quantum Electron. 3 1254

    [18]

    Lee S H, Jung H W, Kim K H, Lee M H, Yoo B S, Roh J, Shore K A 2010 IEEE Photon. Tech. Lett. 22 1759

    [19]

    Deng T, Wu Z M, Xie Y Y, Wu J G, Tang X, Fan L, Panajotov K, Xia G Q 2013 Appl. Opt. 52 3833

    [20]

    Katayama T, Ooi T, Kawaguchi H 2009 IEEE J. Quantum Electron. 45 1495

    [21]

    Torre M, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M 2011 IEEE J. Quantum Electron. 47 92

    [22]

    Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [23]

    Wang X F, Li J 2014 Acta Phys. Sin. 63 014203 (in Chinese) [王小发, 李骏 2014 63 014203]

    [24]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12620

    [25]

    Xiang S, Pan W, Yan L, Luo B, Zou X, Jiang N, Wen K 2011 Opt. Lett. 36 310

    [26]

    Valle A, Pesquera L, Shore K A 1998 IEEE Photon. Technol. Lett. 10 639

    [27]

    Sciamanna M, Panajotov K, Thienpont H, Veretennicoff I, Mgret P, Blondel M 2003 Opt. Lett. 28 1543

  • [1]

    Cao T, Xu C, Xie Y Y, Kan Q, Wei S M, Mao M M, Chen H D 2013 Chin. Phys. B 22 024205

    [2]

    Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese) [王小发 2013 62 104208]

    [3]

    Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B 26 160

    [4]

    Iga K 2000 IEEE J. Select. Top. Quantum Electron. 6 1201

    [5]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [6]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [7]

    Regalado J M, Miguel M S, Abraham N B, Prati F 1996 Opt. Lett. 21 351

    [8]

    Balle S, Tolkachova E, Miguel M S, Tredicce J R, Regalado J M, Gahl A 1999 Opt. Lett. 24 1121

    [9]

    Koyama F 2006 J. Light. Technol. 24 4502

    [10]

    Muller M, Hofmann W, Grundl T, Horn M, Wolf P, Nagel R D, Ronneberg E, Bohm G, Bimberg D, Amann M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1158

    [11]

    Masoller C, Abraham N B 1999 Appl. Phys. Lett. 74 1078

    [12]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 J. Opt. Soc. Am. B 24 1276

    [13]

    Zhang W L, Pan W, Luo B, Wang M Y, Zou X H 2008 IEEE J. Sel. Top. Quantum Electron. 14 889

    [14]

    Xiang S, Pan W, Yan L, Luo B, Zou X, Jiang N, Wen K 2010 J. Opt. Soc. Am. B 27 2512

    [15]

    Chen J J, Xia G Q, Wu Z M 2015 Chin. Phys. B 24 024210

    [16]

    Kaplan A B 2007 Ph. D. Dissertation (South Hadley: Mount Holyoke College)

    [17]

    Hitoshi K 1997 IEEE J. Sel. Top. Quantum Electron. 3 1254

    [18]

    Lee S H, Jung H W, Kim K H, Lee M H, Yoo B S, Roh J, Shore K A 2010 IEEE Photon. Tech. Lett. 22 1759

    [19]

    Deng T, Wu Z M, Xie Y Y, Wu J G, Tang X, Fan L, Panajotov K, Xia G Q 2013 Appl. Opt. 52 3833

    [20]

    Katayama T, Ooi T, Kawaguchi H 2009 IEEE J. Quantum Electron. 45 1495

    [21]

    Torre M, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M 2011 IEEE J. Quantum Electron. 47 92

    [22]

    Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [23]

    Wang X F, Li J 2014 Acta Phys. Sin. 63 014203 (in Chinese) [王小发, 李骏 2014 63 014203]

    [24]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12620

    [25]

    Xiang S, Pan W, Yan L, Luo B, Zou X, Jiang N, Wen K 2011 Opt. Lett. 36 310

    [26]

    Valle A, Pesquera L, Shore K A 1998 IEEE Photon. Technol. Lett. 10 639

    [27]

    Sciamanna M, Panajotov K, Thienpont H, Veretennicoff I, Mgret P, Blondel M 2003 Opt. Lett. 28 1543

  • [1] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器.  , 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [2] 钟东洲, 曾能, 杨华, 徐喆. 外部光注入的光泵浦自旋垂直腔表面发射激光器中的两个混沌偏振分量对两个复杂形状目标中的多区域精确测距.  , 2021, 70(7): 074206. doi: 10.7498/aps.70.20201693
    [3] 孙波, 吴加贵, 王顺天, 吴正茂, 夏光琼. 基于平行偏振光注入的1550nm波段垂直腔表面发射激光器获取窄线宽光子微波的理论和实验研究.  , 2016, 65(1): 014207. doi: 10.7498/aps.65.014207
    [4] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号.  , 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [5] 陈俊, 陈建军, 吴正茂, 蒋波, 夏光琼. 可变偏振光注入下1550nm垂直腔面发射激光器的偏振开关及双稳特性.  , 2016, 65(16): 164204. doi: 10.7498/aps.65.164204
    [6] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究.  , 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [7] 周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼. 基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波.  , 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [8] 周桢力, 夏光琼, 邓涛, 赵茂戎, 吴正茂. 互注入垂直腔表面发射激光器的多次偏振转换特性研究.  , 2015, 64(2): 024208. doi: 10.7498/aps.64.024208
    [9] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究.  , 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [10] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信.  , 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [11] 王小发. 光电负反馈下垂直腔表面发射激光器偏振开关特性研究.  , 2013, 62(10): 104208. doi: 10.7498/aps.62.104208
    [12] 马雅男, 罗斌, 潘炜, 闫连山, 邹喜华, 易安林, 叶佳, 温坤华, 郑狄. 垂直腔面发射激光器的饱和效应对慢光延时影响的研究.  , 2012, 61(1): 014215. doi: 10.7498/aps.61.014215
    [13] 钟东洲, 吴正茂. 电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控.  , 2012, 61(3): 034203. doi: 10.7498/aps.61.034203
    [14] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究.  , 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [15] 李硕, 关宝璐, 史国柱, 郭霞. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究.  , 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [16] 陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼. 基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波.  , 2012, 61(9): 094209. doi: 10.7498/aps.61.094209
    [17] 黄雪兵, 夏光琼, 吴正茂. 时变电流注入下光电负反馈垂直腔表面发射激光器的偏振双稳特性.  , 2010, 59(5): 3066-3069. doi: 10.7498/aps.59.3066
    [18] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究.  , 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [19] 杨炳星, 夏光琼, 林晓东, 吴正茂. 光脉冲注入下VCSEL的偏振开关特性.  , 2009, 58(3): 1480-1483. doi: 10.7498/aps.58.1480
    [20] 钟东洲, 曹文华, 吴正茂, 夏光琼. 各向异性光反馈注入的垂直表面发射激光器的矢量偏振模转换机理.  , 2008, 57(3): 1548-1556. doi: 10.7498/aps.57.1548
计量
  • 文章访问数:  6151
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-28
  • 修回日期:  2015-09-28
  • 刊出日期:  2016-01-20

/

返回文章
返回
Baidu
map