-
系统研究了熔石英激光损伤修复后的形貌特征, 根据测量数据建立了典型的损伤修复坑三维模型, 利用标量衍射理论并结合快速傅里叶变换算法研究了修复坑在351 nm激光辐照下游光场调制的分布规律. 研究表明, 修复坑引起的光场调制会使得下游不同距离位置处出现环形光场增强区和轴上位置光场增强点; 环形光场增强区位置距离修复元件较近, 其环形调制极大值主要受修复坑深度影响, 且随修复坑深度的增大而逐渐增加; 轴上位置光场增强点位置距离修复元件较远, 其轴上调制极大值主要受修复坑边缘凸起高度的影响, 且随凸起高度的增大而快速增加; 环形调制极大值或轴上调制极大值增大的同时, 其分布位置与修复元件之间的距离均会逐渐减小. 实验验证表明, 利用三维修复坑模型得到的下游光场调制数值模拟结果与实验测量结果具有较好的一致性. 本研究结果对控制熔石英元件损伤修复形貌特征以抑制调制增强效应给出了具体的控制方向, 对修复工艺的改进与完善提供了非常有意义的参考.For high-power UV laser facilities, one of the key problems limiting the maximum light influence and safe routine operation is that the UV laser induces damage to fused silica optics. The most effective mitigation protocol of the damaged optics is the CO2 laser processing that leads to make locally melt or evaporate the damage. While the mitigated damage sites possess particular morphology, which may modulate the passing laser beam and induce the downstream intensification that will ruin the neighbor optics. In this work, the morphology features of the mitigated damage pits of fused silica optics are systematically investigated. According to the measured morphology features, a 3D grid model of mitigated pit is built, and the downstream light intensity distribution of the mitigated pit model under incident 351 nm laser is studied by scalar diffraction theory and fast fourier transform (FFT) methods. Results indicate that there are two kinds of downstream intensification: off-axis and on-axis intensifications. In the former intensification, the maximum intensity is located near the output surface of the optics and comes mainly from the depth of the mitigated pit; it increases with the depth. In the alter intensification, the maximum intensity is located far from the output surface of the optics and is mainly dependent on the height of the rim structure at the fringe of the mitigated damage pit; so it increase with increasing height. In addition, it is found that the location of the maximum off-axis or on-axis intensity can approach the output surface of the optics with increasing maximum intensity. For comparison, experimental measurements of downstream intensification induced by the mitigated pits are carried out, and the experimental results are almost consistent with the numerical simulation, implying the validity of the numerical simulation of the mitigated pit model. Results of this research indicate that the downstream intensification of mitigated pits can be suppressed by controlling the morphology features of mitigated pits. this is significant for the development and improvement of the mitigated techniques of damage optics.
-
Keywords:
- fused silica /
- CO2 laser mitigation /
- modulation /
- scalar diffraction theory
[1] Miller G H, Moses E I, Wuest C R 2004 Opt. Eng. 43 2841
[2] Andre M L 1997 Proc. SPIE 3047 38
[3] Peng H S, Zhang X M, Wei X F, Zheng W G, Jing F, Sui Z, Fan D Y, Lin Z Q 1999 Proc. SPIE 3492 25
[4] Bercegol H, Bouchut P, Lamaignere L, Le Garrec B, Raze G 2003 Proc. SPIE 5273 312
[5] Bass I L, Draggoo V G, Guss G M, Hackel R P, Norton M A 2006 Proc. SPIE 6261 A2612
[6] Campbell J H, Hawley-Fedder R A, Stolz C J, Menapace J A, Borden M R, Whitman P K, Yu J, Runkel M, Riley M O, Feit M D, Hackel R P 2004 Proc. SPIE 5341 84
[7] Hrubesh L W, Norton M A, Molander W A, Donohue E E, Maricle S M, Penetrante B M, Brusasco R M, Grundler W, Butler J A, Carr J W, Hill R M, Summers L J, Feit M D, Rubenchik A, Key M H, Wegner P J, Burnham A K, Hackel L A, Kozlowski M R 2002 Proc. SPIE 4679 23
[8] Liu C M, Yang L, Yan Z H, Jiang Y, Wang H J, Liao W, Xiang X, He S B, L H B, Yuan X D, Zheng W G, Zu X T 2013 Acta Phys. Sin. 62 094701 (in Chinese) [刘春明, 杨亮, 晏中华, 蒋勇, 王海军, 廖威, 向霞, 贺少勃, 吕海兵, 袁晓东, 郑万国, 祖小涛 2013 62 094701]
[9] Adams J J, Bolourchi M, Bude J D, Guss G M, Matthews M J, Nostrand M C 2010 Proc. SPIE 7842 784223
[10] Brusasco R M, Penetrante B M, Butler J A, Hrubesh L W 2002 Proc. SPIE 4679 40
[11] Guss G, Bassa I, Draggoo V, Hackel R, Payne S, Lancaster M, Mark P 2007 Proc. SPIE 6403 M4030
[12] Runkel M, Hawley-Fedder R, Widmayer C, Williams W, Weinzapfel C, Roberts D 2005 Proc. SPIE 5991 H9912
[13] Bass I L, Guss G M, Nostrand M J, Wegner P J 2010 Proc. SPIE 7842 784220
[14] Feit M D, Rubenchik A M 1997 Proc. SPIE 3047 971
[15] Anthony T R, Cline H E 1977 J. Appl. Phys. 48 3888
[16] Matthews M J, Bass I L, Guss G M, Widmayer C C, Ravizza F L 2007 Proc. SPIE 6720 A7200
[17] Jiang Y 2012 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [蒋勇 2012 博士学位论文 (成都: 电子科技大学)]
[18] Cormont P, Gallais L, Lamaignere L, Rullier J L, Combis P, Hebert D 2010 Opt. Express 18 2526068
[19] Bourgeade A, Donval T, Gallais L, Lamaignere L, Rullier J L 2015 J. Opt. Soc. Am. B-Optical Physics 32 655
[20] Jiang Y, Liu C M, Luo C S, Yuan X D, Xiang X, Wang H J, He S B, L H B, Ren W, Zheng W G, Zu X T 2012 Chin. Phys. B 21 054216
[21] Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, L H B, Zheng W G, Zu X T 2012 Chin. Phys. B 21 064219
[22] Zhang C L, Liu C M, Xiang X, Dai W, Wang Z G, Li L, Yuan X D, He S B, Zu X T 2012 Acta Phys. Sin. 61 164207 (in Chinese) [章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛 2012 61 164207]
[23] Zhang C L, Wang Z G, Xiang X, Liu C M, Li L, Yuan X D, He S B, Zu X T 2012 Acta Phys. Sin. 61 114210 (in Chinese) [章春来, 王治国, 向霞, 刘春明, 李莉, 袁晓东, 贺少勃, 祖小涛 2012 61 114210]
[24] Li L, Xiang X, Zu X T, Yuan X D, He S B, Jiang X D, Zheng W G 2012 Chin. Phys. B 21 044212
[25] Zhang Y L, Xiao J, Yuan X D, He S B, Jiang Y, Liu C M 2012 High Power Laser and Particle Beams 8 1806 (in Chinese) [张彦磊, 肖峻, 袁晓东, 贺少勃, 蒋勇, 刘春明 2012 强激光与粒子束 8 1806]
[26] Dai W, Xiang X, Jiang Y, Wang H J, Li X B, Yuan X D, Zheng W G, Lv H B, Zu X T 2011 Opt. Lasers Eng. 49 273
[27] Palmier S, Gallais L, Commandre M, Cormont P, Courchinoux R, Lamaignere L, Rullier J L, Legros P 2009 Appl. Surf. Sci. 255 5532
[28] L N G 2006 Fourier Optics 2 (Beijing: China Machine Press) pp87-93 (in Chinese) [吕乃光 2006 傅里叶光学 2 (北京: 机械工业出版社) 第87-93页]
[29] Zhang C C, Zhang L J, Liao W, Yan Z H, Chen J, Jiang Y L, Wang H J, Luan X Y, Ye Y Y, Zheng W G, Yuan X D 2015 Chin. Phys. B 24 024220
-
[1] Miller G H, Moses E I, Wuest C R 2004 Opt. Eng. 43 2841
[2] Andre M L 1997 Proc. SPIE 3047 38
[3] Peng H S, Zhang X M, Wei X F, Zheng W G, Jing F, Sui Z, Fan D Y, Lin Z Q 1999 Proc. SPIE 3492 25
[4] Bercegol H, Bouchut P, Lamaignere L, Le Garrec B, Raze G 2003 Proc. SPIE 5273 312
[5] Bass I L, Draggoo V G, Guss G M, Hackel R P, Norton M A 2006 Proc. SPIE 6261 A2612
[6] Campbell J H, Hawley-Fedder R A, Stolz C J, Menapace J A, Borden M R, Whitman P K, Yu J, Runkel M, Riley M O, Feit M D, Hackel R P 2004 Proc. SPIE 5341 84
[7] Hrubesh L W, Norton M A, Molander W A, Donohue E E, Maricle S M, Penetrante B M, Brusasco R M, Grundler W, Butler J A, Carr J W, Hill R M, Summers L J, Feit M D, Rubenchik A, Key M H, Wegner P J, Burnham A K, Hackel L A, Kozlowski M R 2002 Proc. SPIE 4679 23
[8] Liu C M, Yang L, Yan Z H, Jiang Y, Wang H J, Liao W, Xiang X, He S B, L H B, Yuan X D, Zheng W G, Zu X T 2013 Acta Phys. Sin. 62 094701 (in Chinese) [刘春明, 杨亮, 晏中华, 蒋勇, 王海军, 廖威, 向霞, 贺少勃, 吕海兵, 袁晓东, 郑万国, 祖小涛 2013 62 094701]
[9] Adams J J, Bolourchi M, Bude J D, Guss G M, Matthews M J, Nostrand M C 2010 Proc. SPIE 7842 784223
[10] Brusasco R M, Penetrante B M, Butler J A, Hrubesh L W 2002 Proc. SPIE 4679 40
[11] Guss G, Bassa I, Draggoo V, Hackel R, Payne S, Lancaster M, Mark P 2007 Proc. SPIE 6403 M4030
[12] Runkel M, Hawley-Fedder R, Widmayer C, Williams W, Weinzapfel C, Roberts D 2005 Proc. SPIE 5991 H9912
[13] Bass I L, Guss G M, Nostrand M J, Wegner P J 2010 Proc. SPIE 7842 784220
[14] Feit M D, Rubenchik A M 1997 Proc. SPIE 3047 971
[15] Anthony T R, Cline H E 1977 J. Appl. Phys. 48 3888
[16] Matthews M J, Bass I L, Guss G M, Widmayer C C, Ravizza F L 2007 Proc. SPIE 6720 A7200
[17] Jiang Y 2012 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [蒋勇 2012 博士学位论文 (成都: 电子科技大学)]
[18] Cormont P, Gallais L, Lamaignere L, Rullier J L, Combis P, Hebert D 2010 Opt. Express 18 2526068
[19] Bourgeade A, Donval T, Gallais L, Lamaignere L, Rullier J L 2015 J. Opt. Soc. Am. B-Optical Physics 32 655
[20] Jiang Y, Liu C M, Luo C S, Yuan X D, Xiang X, Wang H J, He S B, L H B, Ren W, Zheng W G, Zu X T 2012 Chin. Phys. B 21 054216
[21] Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, L H B, Zheng W G, Zu X T 2012 Chin. Phys. B 21 064219
[22] Zhang C L, Liu C M, Xiang X, Dai W, Wang Z G, Li L, Yuan X D, He S B, Zu X T 2012 Acta Phys. Sin. 61 164207 (in Chinese) [章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛 2012 61 164207]
[23] Zhang C L, Wang Z G, Xiang X, Liu C M, Li L, Yuan X D, He S B, Zu X T 2012 Acta Phys. Sin. 61 114210 (in Chinese) [章春来, 王治国, 向霞, 刘春明, 李莉, 袁晓东, 贺少勃, 祖小涛 2012 61 114210]
[24] Li L, Xiang X, Zu X T, Yuan X D, He S B, Jiang X D, Zheng W G 2012 Chin. Phys. B 21 044212
[25] Zhang Y L, Xiao J, Yuan X D, He S B, Jiang Y, Liu C M 2012 High Power Laser and Particle Beams 8 1806 (in Chinese) [张彦磊, 肖峻, 袁晓东, 贺少勃, 蒋勇, 刘春明 2012 强激光与粒子束 8 1806]
[26] Dai W, Xiang X, Jiang Y, Wang H J, Li X B, Yuan X D, Zheng W G, Lv H B, Zu X T 2011 Opt. Lasers Eng. 49 273
[27] Palmier S, Gallais L, Commandre M, Cormont P, Courchinoux R, Lamaignere L, Rullier J L, Legros P 2009 Appl. Surf. Sci. 255 5532
[28] L N G 2006 Fourier Optics 2 (Beijing: China Machine Press) pp87-93 (in Chinese) [吕乃光 2006 傅里叶光学 2 (北京: 机械工业出版社) 第87-93页]
[29] Zhang C C, Zhang L J, Liao W, Yan Z H, Chen J, Jiang Y L, Wang H J, Luan X Y, Ye Y Y, Zheng W G, Yuan X D 2015 Chin. Phys. B 24 024220
计量
- 文章访问数: 6837
- PDF下载量: 162
- 被引次数: 0