搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹人工电磁媒质研究进展

鲍迪 沈晓鹏 崔铁军

引用本文:
Citation:

太赫兹人工电磁媒质研究进展

鲍迪, 沈晓鹏, 崔铁军

Progress of terahertz metamaterials

Bao Di, Shen Xiao-Peng, Cui Tie-Jun
PDF
导出引用
  • 近年来, 随着太赫兹科学技术的发展, 越来越多的科学家向太赫兹间隙这一传统空白领域发起挑战. 其中, 人工电磁媒质因为能够设计太赫兹波段中紧缺的功能器件而受到广泛关注. 近年来, 对人工电磁媒质尤其是太赫兹方面的研究进展突飞猛进. 人工电磁媒质的性质不仅仅由其构成材料决定, 更与其结构单元的形状和空间排布密切相关. 本文介绍了人工电磁媒质在太赫兹波段的发展、原理、设计和应用, 并着重介绍完美吸波器和人工表面等离激元, 为太赫兹波段功能器件的研究提供了参考, 并对可能的发展方向予以展望.
    In the past decades, terahertz metamaterials have attracted considerable attention due to the capability of realizing essential terahertz functional devices and potential applications in sensing, imaging, spectroscopy and monitoring. In this review, we first present a brief introduction to the theory and development of terahertz metamaterials, and then focus on some terahertz devices including both triple-band and broadband metamaterial absorbers, the spoof surface plasmon polaritons (SPP) waveguides, the SPP bend, the SPP beam splitter, and the SPP ring resonator. The metamaterial absorbers are fabricated and measured in THz band, while the SPP devices are verified through numerical simulations. All the designs are easy to fabricate and favorable for practical applications.
      通信作者: 崔铁军, tjcui@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61171024, 61171026, 61302018, 61401089, 61571117, 61501112, 61501117, 61138001)、全国优秀博士论文专项基金(批准号: 201444)和高等学校学科创新引智计划(批准号: 111-2-05)资助的课题.
      Corresponding author: Cui Tie-Jun, tjcui@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61171024, 61171026, 61302018, 61401089, 61571117, 61501112, 61501117, 61138001), the Foundation of National Excellent Doctoral Dissertation of China (Grant No. 201444), and the 111 Project (Grant No. 111-2-05).
    [1]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [2]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Micr. Theory Tech. 47 2075

    [3]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [4]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [6]

    Cui T J, Smith D R, Liu R 2009 Metamaterials: Theory, Design, and Applications (New York: Springer Science Business Media)

    [7]

    Chen H T, Padilla W J, Zide J, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [8]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151

    [9]

    Wu J B, Dai H, Wang H, Jin B B, Jia T, Zhang C H, Cao C H, Chen J, Kang L, Xu W W, Wu P H 2011 Opt. Express 19 1101

    [10]

    Liang L J, Jin B B, Zhang Q Y, Wu J B, Bao Y J, Jia T, Jia X Q, Cao C H, Kang L, Xu W W, Chen J, Wu P H 2012 Chin. Phys. Lett. 29 114101

    [11]

    Zhang X Q, Gu J Q, Cao W, Han J G, Lakhtakia A, Zhang W L 2012 Opt. Lett. 37 906

    [12]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [13]

    Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N, Min B 2011 Nature 470 369

    [14]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [15]

    Alves F, Kearney B, Grbovic D, Lavrik N V, Karunasiri G 2012 Appl. Phys. Lett. 100 111104

    [16]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Lett. 36 945

    [17]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 Appl. Phys. A 115 1187

    [18]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nature Photon. 3 148

    [19]

    Maier S A, Andrews S R, Martin-Moreno L, Garca-Vidal F J 2006 Phys. Rev. Lett. 97 176805

    [20]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q Acta Phys. Sin. 2012 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 61 137301]

    [21]

    Garcia-Vidal F J, Martn-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 97

    [22]

    Nagpal P, Lindquist N C, Oh S H, Norris D J 2009 Science 325 594

    [23]

    Brongersma M L, Shalaev V M 2010 Science 328 440

    [24]

    Tian Z, Singh R, Han J G, Gu J Q, Xing Q R, Wu J, Zhang W L 2010 Opt. Lett. 35 3586

    [25]

    Wu D M, Fang N, Sun C, Zhang X 2003 Appl. Phys. Lett. 83 201

    [26]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [27]

    Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M 2004 Science 306 1351

    [28]

    Zhang S, Fan W, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 94 037402

    [29]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [30]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

    [31]

    Paul O, Imhof C, Lgel B, Wolff S, Heinrich J, Hfling S, Forchel A, Zengerle R, Beigang R, Rahm M 2009 Opt. Express 17 819

    [32]

    Chen H T, Palit S, Tyler T, Bingham C M, Zide J M, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117

    [33]

    Smith D R, Schultz S, Marko P, Soukoulis C M 2002 Phys. Rev. B 65 195104

    [34]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [35]

    Tang W X, Cheng Q, Cui T J 2009 Terahertz Sci. Technol. 2 23

    [36]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [37]

    Wang Y, Sun T, Paudel T, Zhang Y, Ren Z, Kempa K 2011 Nano Lett. 12 440

    [38]

    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D, Jepsen P U 2012 Opt. Express 20 635

    [39]

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853

    [40]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [41]

    Hokmabadi M P, Wilbert D S, Kung P, Kim S M 2013 Terahertz Sci. Technol. 6 40

    [42]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R 2011 Opt. Lett. 36 3476

    [43]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [44]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [45]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102

    [46]

    Chen H T 2012 Opt. Express 20 7165

    [47]

    Zhu J, Ma Z, Sun W, Ding F, He Q, Zhou L, Ma Y 2014 Appl. Phys. Lett. 105 021102

    [48]

    Liu S, Chen H, Cui T J 2015 Appl. Phys. Lett. 106 151601

    [49]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [50]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [51]

    Ozbay E 2006 Science 311 189

    [52]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20

    [53]

    Kawata S, Inouye Y, Verma P 2009 Nat. Photon. 3 388

    [54]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [55]

    Stern E A, Ferrell R A 1960 Phys. Rev. 120 130

    [56]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847

    [57]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670

    [58]

    Wang K, Mittleman D M 2006 Phys. Rev. Lett. 96 157401

    [59]

    Williams C R, Andrews S R, Maier S A, Fernndez-Domnguez A I, Martn-Moreno L, Garca-Vidal F J 2008 Nat. Photon. 2 175

    [60]

    Gan Q, Gao Y, Wagner K, Vezenov D, Ding Y J, Bartoli FJ 2011 Proc. Nat. Acad. Sci. 108 5169

    [61]

    Zhou Y J, Jiang Q, Cui T J 2011 Opt. Express 19 5260

    [62]

    Zhou Y J, Cui T J 2011 Appl. Phys. Lett. 98 221901

    [63]

    Zhou Y J, Cui T J 2011 Appl. Phys. Lett. 99 101906

    [64]

    Zhou Y J, Jiang Q, Cui T J 2011 Appl. Phys. Lett. 99 111904

    [65]

    Zhou Y J, Jiang Q, Cui T J 2012 Sci. China: Inform. Sci. 55 79

    [66]

    Shen X P, Cui T J, Martin-Cano D, Garcia-Vidal F J 2013 Proc. Nat. Acad. Sci. 110 40

    [67]

    Shen X P, Cui T J 2013 Appl. Phys. Lett. 102 211909

    [68]

    Shen X P, Cui T J 2013 Terahertz Sci. Technol. 6 147

    [69]

    Wang K, Zhao J, Cheng Q, Dong D S, Cui T J 2014 Sci. Rep. 4 5935

    [70]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218

    [71]

    Wan X, Jiang W X, Ma H F, Cui T J 2014 Appl. Phys. Lett. 104 151601

    [72]

    Mei Z L, Cui T J 2012 Int. J. RF Microw. C E 22 496

  • [1]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [2]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Micr. Theory Tech. 47 2075

    [3]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [4]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [6]

    Cui T J, Smith D R, Liu R 2009 Metamaterials: Theory, Design, and Applications (New York: Springer Science Business Media)

    [7]

    Chen H T, Padilla W J, Zide J, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [8]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151

    [9]

    Wu J B, Dai H, Wang H, Jin B B, Jia T, Zhang C H, Cao C H, Chen J, Kang L, Xu W W, Wu P H 2011 Opt. Express 19 1101

    [10]

    Liang L J, Jin B B, Zhang Q Y, Wu J B, Bao Y J, Jia T, Jia X Q, Cao C H, Kang L, Xu W W, Chen J, Wu P H 2012 Chin. Phys. Lett. 29 114101

    [11]

    Zhang X Q, Gu J Q, Cao W, Han J G, Lakhtakia A, Zhang W L 2012 Opt. Lett. 37 906

    [12]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [13]

    Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N, Min B 2011 Nature 470 369

    [14]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [15]

    Alves F, Kearney B, Grbovic D, Lavrik N V, Karunasiri G 2012 Appl. Phys. Lett. 100 111104

    [16]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Lett. 36 945

    [17]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 Appl. Phys. A 115 1187

    [18]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nature Photon. 3 148

    [19]

    Maier S A, Andrews S R, Martin-Moreno L, Garca-Vidal F J 2006 Phys. Rev. Lett. 97 176805

    [20]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q Acta Phys. Sin. 2012 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 61 137301]

    [21]

    Garcia-Vidal F J, Martn-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 97

    [22]

    Nagpal P, Lindquist N C, Oh S H, Norris D J 2009 Science 325 594

    [23]

    Brongersma M L, Shalaev V M 2010 Science 328 440

    [24]

    Tian Z, Singh R, Han J G, Gu J Q, Xing Q R, Wu J, Zhang W L 2010 Opt. Lett. 35 3586

    [25]

    Wu D M, Fang N, Sun C, Zhang X 2003 Appl. Phys. Lett. 83 201

    [26]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [27]

    Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M 2004 Science 306 1351

    [28]

    Zhang S, Fan W, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 94 037402

    [29]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [30]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

    [31]

    Paul O, Imhof C, Lgel B, Wolff S, Heinrich J, Hfling S, Forchel A, Zengerle R, Beigang R, Rahm M 2009 Opt. Express 17 819

    [32]

    Chen H T, Palit S, Tyler T, Bingham C M, Zide J M, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117

    [33]

    Smith D R, Schultz S, Marko P, Soukoulis C M 2002 Phys. Rev. B 65 195104

    [34]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [35]

    Tang W X, Cheng Q, Cui T J 2009 Terahertz Sci. Technol. 2 23

    [36]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [37]

    Wang Y, Sun T, Paudel T, Zhang Y, Ren Z, Kempa K 2011 Nano Lett. 12 440

    [38]

    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D, Jepsen P U 2012 Opt. Express 20 635

    [39]

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853

    [40]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [41]

    Hokmabadi M P, Wilbert D S, Kung P, Kim S M 2013 Terahertz Sci. Technol. 6 40

    [42]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R 2011 Opt. Lett. 36 3476

    [43]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [44]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [45]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102

    [46]

    Chen H T 2012 Opt. Express 20 7165

    [47]

    Zhu J, Ma Z, Sun W, Ding F, He Q, Zhou L, Ma Y 2014 Appl. Phys. Lett. 105 021102

    [48]

    Liu S, Chen H, Cui T J 2015 Appl. Phys. Lett. 106 151601

    [49]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [50]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [51]

    Ozbay E 2006 Science 311 189

    [52]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20

    [53]

    Kawata S, Inouye Y, Verma P 2009 Nat. Photon. 3 388

    [54]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [55]

    Stern E A, Ferrell R A 1960 Phys. Rev. 120 130

    [56]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847

    [57]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670

    [58]

    Wang K, Mittleman D M 2006 Phys. Rev. Lett. 96 157401

    [59]

    Williams C R, Andrews S R, Maier S A, Fernndez-Domnguez A I, Martn-Moreno L, Garca-Vidal F J 2008 Nat. Photon. 2 175

    [60]

    Gan Q, Gao Y, Wagner K, Vezenov D, Ding Y J, Bartoli FJ 2011 Proc. Nat. Acad. Sci. 108 5169

    [61]

    Zhou Y J, Jiang Q, Cui T J 2011 Opt. Express 19 5260

    [62]

    Zhou Y J, Cui T J 2011 Appl. Phys. Lett. 98 221901

    [63]

    Zhou Y J, Cui T J 2011 Appl. Phys. Lett. 99 101906

    [64]

    Zhou Y J, Jiang Q, Cui T J 2011 Appl. Phys. Lett. 99 111904

    [65]

    Zhou Y J, Jiang Q, Cui T J 2012 Sci. China: Inform. Sci. 55 79

    [66]

    Shen X P, Cui T J, Martin-Cano D, Garcia-Vidal F J 2013 Proc. Nat. Acad. Sci. 110 40

    [67]

    Shen X P, Cui T J 2013 Appl. Phys. Lett. 102 211909

    [68]

    Shen X P, Cui T J 2013 Terahertz Sci. Technol. 6 147

    [69]

    Wang K, Zhao J, Cheng Q, Dong D S, Cui T J 2014 Sci. Rep. 4 5935

    [70]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218

    [71]

    Wan X, Jiang W X, Ma H F, Cui T J 2014 Appl. Phys. Lett. 104 151601

    [72]

    Mei Z L, Cui T J 2012 Int. J. RF Microw. C E 22 496

  • [1] 孙淑鹏, 程用志, 罗辉, 陈浮, 杨玲玲, 李享成. 基于人工表面等离激元的小型化电可调缺口带滤波器.  , 2024, 73(3): 034101. doi: 10.7498/aps.73.20231447
    [2] 孙淑鹏, 程用志, 罗辉, 陈浮, 李享成. 基于戟形人工表面等离激元的紧凑型宽带外抑制带通滤波器.  , 2023, 72(6): 064101. doi: 10.7498/aps.72.20222291
    [3] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成. 基于沙漏形人工表面等离激元和交指电容结构的双频滤波器设计.  , 2023, 72(4): 044101. doi: 10.7498/aps.72.20221984
    [4] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [5] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性.  , 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] 朱智, 闫韶健, 段铜川, 赵妍, 孙庭钰, 李阳梅. 太赫兹电磁波调控甲烷水合物分解.  , 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [7] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性.  , 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [8] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山. S/X双频带吸波实时可调的吸波器.  , 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [9] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强.  , 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [10] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散.  , 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [11] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器.  , 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [12] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波. 基于人工表面等离激元的双通带频率选择结构设计.  , 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [13] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元.  , 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [14] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [15] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [16] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究.  , 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [17] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响.  , 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [18] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究.  , 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [19] 赵强, 文岐业, 戴雨涵, 张继华, 陈宏伟, 杨传仁, 张万里. 基于钛酸锶钡介电非线性效应的可调谐太赫兹人工电磁媒质.  , 2013, 62(4): 044104. doi: 10.7498/aps.62.044104
    [20] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波.  , 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
计量
  • 文章访问数:  8966
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-07-08
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map