-
具有小型化的缺口带滤波器在微波集成系统中具有广泛的应用前景. 本文基于倒山形单元的人工表面等离激元(spoof surface plasmon polariton, SSPP)提出了一种新型小型化电可调缺口带滤波器. 与相同横向尺寸的传统SSPP单元相比, 所提出的倒山形单元的色散曲线表现出更好的慢波特性, 渐近频率降低至原来的55%. 缺口带的频率可通过调整变容二极管两端的偏置电压来动态控制. 随着偏置电压从0.5 V增至30 V, 缺口带频率从2.1 GHz移动到2.3 GHz, 实现动态调节. 仿真结果表明, 缺口带滤波器通带内实现了较低的插入损耗(S21 < –1 dB)和良好的回波损耗(S11 > –10 dB), 并且具有小型化的优势, 尺寸仅为0.78λg × 0.35λg, λg是中心频率处的波长. 采用印刷电路板技术实际加工了缺口带滤波器. 实物测量和仿真结果吻合较好, 验证了设计的可靠性.In this paper, a novel miniaturized electronical controlled notch band filter based on spoof surface plasmon polaritons (SSPPs) with inverted “山”-shaped unit is designed and experimentally demonstrated. The notch band filter is mainly composed of four parts: microstrip transmission line, transition structure, inverted “山”-shaped SSPPs, and split ring resonator (SRR) structure, and a varactor diode is embedded in the slit notch of the SRR structure to realize electronic control. Comparing with the traditional SSPP unit with the same lateral size, the dispersion curve of the proposed inverted “山”-shaped unit shows better slow wave characteristics, and the asymptotic frequency is reduced to 55%. The frequency of the notch band can be dynamically controlled by adjusting the external bias voltage at both ends of the varactor diode. As the external bias voltage increases from 0.5 V to 30 V, the notch band frequency can be changed from 2.1 GHz to 2.3 GHz and achieve easily electronic regulation. The simulation results show that the notched band filter achieves low insertion loss (S21 < –1 dB) and great return loss (S11 > –10 dB) in the pass band, which has the advantage of miniaturization with the size only 0.78λg × 0.35λg. It is worth noting that when the equivalent capacitance of the slit notch is changed, the transmission coefficient of the notched band is always less than –15 dB, showing superior band-stop performance. At the same time, by comparing and analyzing the electric field distribution of notch band filter, the transmission mechanism of microwave signal is further verified. In order to verify the its effectiveness, the traditional printed circuit board technology is used to fabricate notch band filter. The measurement results are in good agreement with the simulation ones, verifying the feasibility of the design. The electronically controlled notch band filter has higher integration and can effectively suppress the interference frequency band.
-
Keywords:
- spoof surface plasmon polaritons /
- electronic control /
- notch band filter /
- resonator
[1] Bi X K, Zhang X, Huang G L, Yuan T 2019 IEEE Access 7 49169Google Scholar
[2] Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar
[3] Liao Z, Zhao J, Pan B C 2014 Appl. Phys. 47 315103Google Scholar
[4] Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Plasmonics 18 165Google Scholar
[5] Li X P, Zhang J X, Yang H L, Xi X L 2022 J. Electron. Inf. Technol. 44 1327 [李绪平, 张佳翔, 杨海龙, 席晓莉 2022 电子与信息学报 44 1327]Google Scholar
Google ScholarLi X P, Zhang J X, Yang H L, Xi X L 2022 J. Electron. Inf. Technol.44 1327 [6] 孙淑鹏, 程用志, 罗辉, 陈浮, 李享成 2023 72 064101Google Scholar
Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Acta Phys. Sin. 72 064101Google Scholar
[7] 朱华利, 张勇, 叶龙芳 2022 光学学报 42 1523001Google Scholar
Zhu H L, Zhang Y, Ye L F 2022 Acta Opt. Sin. 42 1523001Google Scholar
[8] Chen P, Li L, Yang K, Chen Q 2018 IEEE Microw. Wirel. Co. 28 984Google Scholar
[9] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成 2023 72 044101Google Scholar
Luo Y X, Cheng Y Z, Chen F, Luo H, Li X C 2023 Acta Phys. Sin 72 044101Google Scholar
[10] 朱登玮, 曾瑞敏, 唐泽恬, 丁召, 杨晨 2020 激光与光电子学进展 57 172401Google Scholar
Zhu D W, Zeng R M, Tang Z T, Ding Z, Yang C 2020 Laser Optoelectron. Prog. 57 172401Google Scholar
[11] Sangam R S, Kshetrimayum R S 2021 IET Microw. Antennas Propag. 15 289Google Scholar
[12] Wang J, Zhao L, Hao Z C, Shen X P, Cui T J 2019 Optics Letters 44 3374Google Scholar
[13] Kianinejad A, Chen Z N, Qiu C W 2015 IEEE T. Microw. Theory. 63 1817Google Scholar
[14] Yin J Y, Ren J, Zhang Q, Zhang H C, Liu Y Q, Li Y B, Wan X, Cui T J 2016 IEEE T. Antenn. Propag. 64 5181Google Scholar
[15] Wang Z X, Zhang H C, Lu J Y 2019 J. Phys. D Appl. Phys. 52 025107Google Scholar
[16] Ye L F, Chen Z K, Zhang Y 2022 IEEE T. Circuits-II 70 1445Google Scholar
[17] Xu J, Zhang H C, Tang W X 2016 Appl. Phys. Lett. 108 191906Google Scholar
[18] Lin H, Yu J B, Xiao B G 2023 J. Phys. B 56 075401Google Scholar
[19] Liu H, Wang Z, Zhang Q, Ma H 2019 IEEE Access 7 44212Google Scholar
[20] Jiang T, Shen L, Zhang X 2009 Prog. Electromagn. Res. 8 91Google Scholar
-
图 3 (a)电可调缺口带滤波器示意图; (b) 对应的等效LC电路; (c)电磁和等效LC电路仿真得到的S参数(S11和S21); (d)电磁仿真得到的S参数(S11和S21)相位
Fig. 3. (a) Schematic diagram of an electrically adjustable notched band filter; (b) the corresponding equivalent LC circuit model; (c) comparisons of S-parameters (S11 and S21) from EM and equivalent LC circuit simulations; (d) the phases of S-parameters (S11 and S21) from EM simulation.
表 1 与参考文献中滤波器的性能对比
Table 1. Comparison with filters in references.
-
[1] Bi X K, Zhang X, Huang G L, Yuan T 2019 IEEE Access 7 49169Google Scholar
[2] Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar
[3] Liao Z, Zhao J, Pan B C 2014 Appl. Phys. 47 315103Google Scholar
[4] Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Plasmonics 18 165Google Scholar
[5] Li X P, Zhang J X, Yang H L, Xi X L 2022 J. Electron. Inf. Technol. 44 1327 [李绪平, 张佳翔, 杨海龙, 席晓莉 2022 电子与信息学报 44 1327]Google Scholar
Google ScholarLi X P, Zhang J X, Yang H L, Xi X L 2022 J. Electron. Inf. Technol.44 1327 [6] 孙淑鹏, 程用志, 罗辉, 陈浮, 李享成 2023 72 064101Google Scholar
Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Acta Phys. Sin. 72 064101Google Scholar
[7] 朱华利, 张勇, 叶龙芳 2022 光学学报 42 1523001Google Scholar
Zhu H L, Zhang Y, Ye L F 2022 Acta Opt. Sin. 42 1523001Google Scholar
[8] Chen P, Li L, Yang K, Chen Q 2018 IEEE Microw. Wirel. Co. 28 984Google Scholar
[9] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成 2023 72 044101Google Scholar
Luo Y X, Cheng Y Z, Chen F, Luo H, Li X C 2023 Acta Phys. Sin 72 044101Google Scholar
[10] 朱登玮, 曾瑞敏, 唐泽恬, 丁召, 杨晨 2020 激光与光电子学进展 57 172401Google Scholar
Zhu D W, Zeng R M, Tang Z T, Ding Z, Yang C 2020 Laser Optoelectron. Prog. 57 172401Google Scholar
[11] Sangam R S, Kshetrimayum R S 2021 IET Microw. Antennas Propag. 15 289Google Scholar
[12] Wang J, Zhao L, Hao Z C, Shen X P, Cui T J 2019 Optics Letters 44 3374Google Scholar
[13] Kianinejad A, Chen Z N, Qiu C W 2015 IEEE T. Microw. Theory. 63 1817Google Scholar
[14] Yin J Y, Ren J, Zhang Q, Zhang H C, Liu Y Q, Li Y B, Wan X, Cui T J 2016 IEEE T. Antenn. Propag. 64 5181Google Scholar
[15] Wang Z X, Zhang H C, Lu J Y 2019 J. Phys. D Appl. Phys. 52 025107Google Scholar
[16] Ye L F, Chen Z K, Zhang Y 2022 IEEE T. Circuits-II 70 1445Google Scholar
[17] Xu J, Zhang H C, Tang W X 2016 Appl. Phys. Lett. 108 191906Google Scholar
[18] Lin H, Yu J B, Xiao B G 2023 J. Phys. B 56 075401Google Scholar
[19] Liu H, Wang Z, Zhang Q, Ma H 2019 IEEE Access 7 44212Google Scholar
[20] Jiang T, Shen L, Zhang X 2009 Prog. Electromagn. Res. 8 91Google Scholar
计量
- 文章访问数: 2142
- PDF下载量: 90
- 被引次数: 0