搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多元半导体光伏材料中晶格缺陷的计算预测

袁振坤 许鹏 陈时友

引用本文:
Citation:

多元半导体光伏材料中晶格缺陷的计算预测

袁振坤, 许鹏, 陈时友

Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials

Yuan Zhen-Kun, Xu Peng, Chen Shi-You
PDF
导出引用
  • 半导体光伏材料的发展在过去60多年中表现出了清晰的多元化趋势. 从20世纪50年代的一元Si太阳能电池, 到20世纪60年代的GaAs和CdTe电池、70年代的CuInSe2电池、80年代的Cu(In, Ga) Se2、90年代的Cu2ZnSnS4电池, 再到最近的Cu2ZnSn(S, Se)4和CH3NH3PbI3电池, 组成光伏半导体的元素种类从一元逐渐增多到五元. 元素种类的增多使得半导体物性调控的自由度增多, 物性更加丰富, 因而能满足光伏等器件应用的需要. 但是, 组分元素种类的增多也导致半导体中晶格点缺陷的种类大幅增加, 可能对其光学、电学性质和光伏性能产生显著影响. 近20年来, 第一性原理计算被广泛应用于半导体中晶格点缺陷的理论预测, 相对于间接的实验手段, 第一性原理计算具有更加直接的、明确的优势, 并且能对各种点缺陷进行快速的研究. 对于缺陷种类众多的多元半导体体系, 第一性原理计算能预测各种点缺陷的微观构型、浓度和跃迁(离化)能级位置, 从而揭示其对光电性质的影响, 发现影响器件性能的关键缺陷. 因而, 相关的计算结果对于实验研究有直接、重要的指导意义. 本文将首先介绍半导体点缺陷研究的第一性原理计算模型和计算流程; 然后, 总结近5年来两类新型光伏半导体材料, 类似闪锌矿结构的Cu2ZnSn(S, Se)4半导体和有机-无机杂化的钙钛矿结构CH3NH3PbI3半导体的点缺陷性质; 以这两类体系为例, 介绍多元半导体缺陷性质的独特特征及其对太阳能电池器件性能的影响.
    In the past 60 years development of photovoltaic semiconductors, the number of component elements has increased steadily, i.e., from silicon in the 1950s, to GaAs and CdTe in the 1960s, to CuInSe2 in the 1970s, to Cu(In, Ga) Se2 in the 1980s, to Cu2ZnSnS4 in the 1990s, and to recent Cu2ZnSn(S, Se)4 and CH3NH3PbI3. Whereas the material properties become more flexible as a result of the increased number of elements, and multinary compound semiconductors feature a dramatic increase of possible point defects in the lattice, which can significantly influence the optical and electrical properties and ultimately the photovoltaic performance. It is challenging to characterize the various point defects and defect pairs experimentally. During the last 20 years, first-principles calculations based on density functional theory (DFT) have offered an alternative method of overcoming the difficulties in experimental study, and widely used in predicting the defect properties of semiconductors. Compared with the available experimental methods, the first-principles calculations are fast, direct and exact since all possible defects can be investigated one by one. This advantage is especially crucial in the study of multinary compound semiconductors which have a large number of possible defects. Through calculating the formation energies, concentration and transition (ionization) energy levels of various possible defects, we can study their influences on the device performance and then identify the dominant defects that are critical for the further optimization of the performance. In this paper, we introduce the first-principles calculation model and procedure for studying the point defects in materials. We focus on the hybrid scheme which combines the advantages of both special k-points and -point-only approaches. The shortcomings of the presentcalculation model are discussed, with the possible solutions proposed. And then, we review the recent progress in the study of the point defects in two types of multinary photovoltaic semiconductors, Cu2ZnSn(S,Se)4 and H3NH3PbI3. The result of the increased number of component elements involves various competing secondary phases, limiting the formation of single-phase multinary compound semiconductors. Unlike ternary CuInSe2, the dominant defect that determines the p-type conductivity in Cu2ZnSnS4 is Cu-on-Zn antisite (CuZn) defect rather than the copper vacancy (VCu). However, the ionization level of CuZn is deeper than that of VCu. The self-compensated defect pairs such as [2CuZn+SnZn] are easy to form in Cu2ZnSnS4, which causes band gap fluctuations and limits the Voc of Cu2ZnSnS4 cells. Additionally the formation energies of deep level defects, SnZn and VS, are not sufficiently high in Cu2ZnSnS4, leading to poor lifetime of minority carriers and hence low Voc. In order to enhance the formation of VCu and suppress the formation of CuZn as well as deep level defects, a Cu-poor/Zn-rich growth condition is required. Compared with Cu2ZnSnS4, the concentration of deep level defects is predicted to be low in Cu2ZnSnSe4, therefore, the devices fabricated based on the Se-rich Cu2ZnSn(S,Se)4 alloys exhibit better performances. Unlike Cu2ZnSnS4 cells, the CH3NH3PbI3 cells exhibit rather high Voc and long minority-carrier life time. The unusually benign defect physics of CH3NH3PbI3 is responsible for the remarkable performance of CH3NH3PbI3 cells. First, CH3NH3PbI3 shows that flexible conductivity is dependent on growth condition. This behavior is distinguished from common p-type photovoltaic semiconductor, in which the n-type doping is generally difficult. Second, in CH3NH3PbI3, defects with low formation energies create only shallow levels. Through controlling the carrier concentration (Fermi level) and growth condition, the formation of deep-level defect can be suppressed in CH3NH3PbI3. We conclude that the predicted results from the first-principles calculations are very useful for guiding the experimental study.
      通信作者: 陈时友, chensy@ee.ecnu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921401)、国家自然科学基金(批准号: 91233121) 和上海市青年科技启明星项目(批准号: 14QA1401500)资助的课题.
      Corresponding author: Chen Shi-You, chensy@ee.ecnu.edu.cn
    • Funds: Project supported by Basic Research Program of China (Grant No. 2012CB921401), the National Natural Science Foundation of China (Grant No. 91233121), and the Shanghai Rising-Star Program, China (Grant No. 14QA1401500).
    [1]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt.: Res. Appl. 23 1

    [3]

    Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, Powalla M 2015 Phys. Status Solidi RRL 9 28

    [4]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [5]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [7]

    Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D 2014 Nature Commun. 5 3461

    [8]

    Umari P, Mosconi E, de Angelis F 2014 Sci. Rep. 4 4467

    [9]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [10]

    Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser J E 2014 Nat. Photon. 8 250

    [11]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [12]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [13]

    Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M, Park N G 2013 Nano Lett. 13 2412

    [14]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506

    [15]

    Lang L, Yang J H, Liu H R, Xiang H, Gong X 2014 Phys. Lett. A 378 290

    [16]

    Xu P, Chen S, Xiang H J, Gong X G, Wei S H 2014 Chem. Mater. 26 6068

    [17]

    Walsh A, Scanlon D O, Chen S, Gong X G, Wei S H 2015 Angew. Chem. Int. Ed. 54 1791

    [18]

    Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [19]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [20]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [22]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [23]

    Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439

    [24]

    Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339

    [25]

    ágoston P, Albe K, Nieminen R M, Puska M J 2009 Phys. Rev. Lett. 103 245501

    [26]

    Lany S, Zunger A 2011 Phys. Rev. Lett. 106 069601

    [27]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202

    [28]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C G 2014 Rev. Mod. Phys. 86 253

    [29]

    Lany S, Zunger A 2008 Phys. Rev. B 78 235104

    [30]

    Wei S H 2004 Comput. Mater. Sci. 30 337

    [31]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [32]

    Jing T, Dai Y, Wei W, Ma X, Huang B 2014 Phys. Chem. Chem. Phys. 16 18596

    [33]

    Ma X, Dai Y, Huang B 2014 ACS Appl. Mater. Inter. 6 22815

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [35]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642

    [36]

    Wei S H, Yan Y 2011 Advanced Calculations for Defects in Materials: Electronic Structure Methods 2 13

    [37]

    Yan Y F, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912

    [38]

    Na-Phattalung S, Smith M F, Kim K, Du M H, Wei S H, Zhang S, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [39]

    Li X, Keyes B, Asher S, Zhang S, Wei S H, Coutts T J, Limpijumnong S, van de Walle C G 2005 Appl. Phys. Lett. 86 122107

    [40]

    Chen S, Yang J H, Gong X, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204

    [41]

    Yin W J, Wei S H, Al-Jassim M M, Turner J, Yan Y 2011 Phys. Rev. B 83 155102

    [42]

    Ma J, Wei S H, Gessert T, Chin K K 2011 Phys. Rev. B 83 245207

    [43]

    Li J, Wei S H, Li S S, Xia J B 2008 Phys. Rev. B 77 113304

    [44]

    Walsh A, Da Silva J L, Wei S H, Körber C, Klein A, Piper L, DeMasi A, Smith K E, Panaccione G, Torelli P 2008 Phys. Rev. Lett. 100 167402

    [45]

    Makov G, Payne M 1995 Phys. Rev. B 51 4014

    [46]

    Lany S, Zunger A 2005 Phys. Rev. B 72 035215

    [47]

    Han D, Sun Y, Bang J, Zhang Y, Sun H B, Li X B, Zhang S 2013 Phys. Rev. B 87 155206

    [48]

    Deák P, Aradi B, Frauenheim T, Janzén E, Gali A 2010 Phys. Rev. B 81 153203

    [49]

    Lyons J L, Janotti A, van de Walle C G 2009 Appl. Phys. Lett. 95 252105

    [50]

    Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 Phys. Rev. Lett. 111 067402

    [51]

    Bang J, Sun Y Y, Abtew T A, Samanta A, Zhang P, Zhang S B 2013 Phys. Rev. B 88 035134

    [52]

    Tanaka K, Oonuki M, Moritake N, Uchiki H 2009 Sol. Energy Mater. Sol. Cells 93 583

    [53]

    Weber A, Schmidt S, Abou-Ras D, Schubert-Bischoff P, Denks I, Mainz R, Schock H-W 2009 Appl. Phys. Lett. 95 041904

    [54]

    Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [55]

    Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H, Takeuchi A 2009 Thin Solid Films 517 2455

    [56]

    Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T 2008 Appl. Phys. Express 1 041201

    [57]

    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi b 245 1772

    [58]

    Cui H T, Liu X L, Liu F Y, Hao X J, Song N, Yan C 2014 Appl. Phys. Lett. 104 041115

    [59]

    Paier J, Asahi R, Nagoya A, Kresse G 2009 Phys. Rev. B 79 115126

    [60]

    Liu J, Choy K L, Placidi M, López‐García J, Saucedo E, Colombara D, Robert E 2015 Phys. Status Solidi a 212 135

    [61]

    Lin X, Ennaoui A, Levcenko S, Dittrich T, Kavalakkatt J, Kretzschmar S, Unold T, Lux-Steiner M C 2015 Appl. Phys. Lett. 106 013903

    [62]

    Ford G M, Guo Q, Agrawal R, Hillhouse H W 2011 Chem. Mater. 23 2626

    [63]

    Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S 2014 Adv. Mater. 26 7427

    [64]

    Gunawan O, Todorov T K, Mitzi D B 2010 Appl. Phys. Lett. 97 233506

    [65]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [66]

    Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A 3 8926

    [67]

    Schubert B A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock H W 2011 Prog. Photovolt.: Res. Appl. 19 93

    [68]

    Wang C, Chen S, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411

    [69]

    Todorov T K, Reuter K B, Mitzi D B 2010 Adv. Mater. 22 E156

    [70]

    Redinger A, Siebentritt S 2010 Appl. Phys. Lett. 97 092111

    [71]

    Fontané X, Calvo-Barrio L, Izquierdo-Roca V, Saucedo E, Pérez-Rodriguez A, Morante J, Berg D, Dale P, Siebentritt S 2011 Appl. Phys. Lett. 98 181905

    [72]

    Just J, Ltzenkirchen-Hecht D, Frahm R, Schorr S, Unold T 2011 Appl. Phys. Lett. 99 262105

    [73]

    Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202

    [74]

    Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902

    [75]

    Chen S, Wang L W, Walsh A, Gong X G, Wei S H 2012 Appl. Phys. Lett. 101 223901

    [76]

    Schorr S, Hoebler H J, Tovar M 2007 Eur. J. Mineral. 19 65

    [77]

    Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A, Mitzi D, Guha S 2010 Appl. Phys. Lett. 97 143508

    [78]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt.: Res. Appl. 21 72

    [79]

    Collord A D, Hillhouse H W 2015 Chem. Mater. 27 1855

    [80]

    Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Yoshino K 2013 Appl. Phys. Lett. 103 112107

    [81]

    Levcenko S, Tezlevan V E, Arushanov E, Schorr S, Unold T 2012 Phys. Rev. B 86 045206

    [82]

    Shockley W, Read Jr W 1952 Phys. Rev. 87 835

    [83]

    Sites J, Pan J 2007 Thin Solid Films 515 6099

    [84]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [85]

    Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508

    [86]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903

    [87]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249

    [88]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [89]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674

    [90]

    Kim J, Lee S H, Lee J H, Hong K H 2014 J. Phys. Chem. Lett. 5 1312

    [91]

    Du M H 2014 J. Mater. Chem. A 2 9091

    [92]

    Duan H S, Zhou H, Chen Q, Sun P, Luo S, Song T B, Bob B, Yang Y 2015 Phys. Chem. Chem. Phys. 17 112

    [93]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281

    [94]

    Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570

  • [1]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt.: Res. Appl. 23 1

    [3]

    Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, Powalla M 2015 Phys. Status Solidi RRL 9 28

    [4]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [5]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [7]

    Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D 2014 Nature Commun. 5 3461

    [8]

    Umari P, Mosconi E, de Angelis F 2014 Sci. Rep. 4 4467

    [9]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [10]

    Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser J E 2014 Nat. Photon. 8 250

    [11]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [12]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [13]

    Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M, Park N G 2013 Nano Lett. 13 2412

    [14]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506

    [15]

    Lang L, Yang J H, Liu H R, Xiang H, Gong X 2014 Phys. Lett. A 378 290

    [16]

    Xu P, Chen S, Xiang H J, Gong X G, Wei S H 2014 Chem. Mater. 26 6068

    [17]

    Walsh A, Scanlon D O, Chen S, Gong X G, Wei S H 2015 Angew. Chem. Int. Ed. 54 1791

    [18]

    Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [19]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [20]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [22]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [23]

    Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439

    [24]

    Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339

    [25]

    ágoston P, Albe K, Nieminen R M, Puska M J 2009 Phys. Rev. Lett. 103 245501

    [26]

    Lany S, Zunger A 2011 Phys. Rev. Lett. 106 069601

    [27]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202

    [28]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C G 2014 Rev. Mod. Phys. 86 253

    [29]

    Lany S, Zunger A 2008 Phys. Rev. B 78 235104

    [30]

    Wei S H 2004 Comput. Mater. Sci. 30 337

    [31]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [32]

    Jing T, Dai Y, Wei W, Ma X, Huang B 2014 Phys. Chem. Chem. Phys. 16 18596

    [33]

    Ma X, Dai Y, Huang B 2014 ACS Appl. Mater. Inter. 6 22815

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [35]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642

    [36]

    Wei S H, Yan Y 2011 Advanced Calculations for Defects in Materials: Electronic Structure Methods 2 13

    [37]

    Yan Y F, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912

    [38]

    Na-Phattalung S, Smith M F, Kim K, Du M H, Wei S H, Zhang S, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [39]

    Li X, Keyes B, Asher S, Zhang S, Wei S H, Coutts T J, Limpijumnong S, van de Walle C G 2005 Appl. Phys. Lett. 86 122107

    [40]

    Chen S, Yang J H, Gong X, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204

    [41]

    Yin W J, Wei S H, Al-Jassim M M, Turner J, Yan Y 2011 Phys. Rev. B 83 155102

    [42]

    Ma J, Wei S H, Gessert T, Chin K K 2011 Phys. Rev. B 83 245207

    [43]

    Li J, Wei S H, Li S S, Xia J B 2008 Phys. Rev. B 77 113304

    [44]

    Walsh A, Da Silva J L, Wei S H, Körber C, Klein A, Piper L, DeMasi A, Smith K E, Panaccione G, Torelli P 2008 Phys. Rev. Lett. 100 167402

    [45]

    Makov G, Payne M 1995 Phys. Rev. B 51 4014

    [46]

    Lany S, Zunger A 2005 Phys. Rev. B 72 035215

    [47]

    Han D, Sun Y, Bang J, Zhang Y, Sun H B, Li X B, Zhang S 2013 Phys. Rev. B 87 155206

    [48]

    Deák P, Aradi B, Frauenheim T, Janzén E, Gali A 2010 Phys. Rev. B 81 153203

    [49]

    Lyons J L, Janotti A, van de Walle C G 2009 Appl. Phys. Lett. 95 252105

    [50]

    Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 Phys. Rev. Lett. 111 067402

    [51]

    Bang J, Sun Y Y, Abtew T A, Samanta A, Zhang P, Zhang S B 2013 Phys. Rev. B 88 035134

    [52]

    Tanaka K, Oonuki M, Moritake N, Uchiki H 2009 Sol. Energy Mater. Sol. Cells 93 583

    [53]

    Weber A, Schmidt S, Abou-Ras D, Schubert-Bischoff P, Denks I, Mainz R, Schock H-W 2009 Appl. Phys. Lett. 95 041904

    [54]

    Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [55]

    Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H, Takeuchi A 2009 Thin Solid Films 517 2455

    [56]

    Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T 2008 Appl. Phys. Express 1 041201

    [57]

    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi b 245 1772

    [58]

    Cui H T, Liu X L, Liu F Y, Hao X J, Song N, Yan C 2014 Appl. Phys. Lett. 104 041115

    [59]

    Paier J, Asahi R, Nagoya A, Kresse G 2009 Phys. Rev. B 79 115126

    [60]

    Liu J, Choy K L, Placidi M, López‐García J, Saucedo E, Colombara D, Robert E 2015 Phys. Status Solidi a 212 135

    [61]

    Lin X, Ennaoui A, Levcenko S, Dittrich T, Kavalakkatt J, Kretzschmar S, Unold T, Lux-Steiner M C 2015 Appl. Phys. Lett. 106 013903

    [62]

    Ford G M, Guo Q, Agrawal R, Hillhouse H W 2011 Chem. Mater. 23 2626

    [63]

    Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S 2014 Adv. Mater. 26 7427

    [64]

    Gunawan O, Todorov T K, Mitzi D B 2010 Appl. Phys. Lett. 97 233506

    [65]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [66]

    Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A 3 8926

    [67]

    Schubert B A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock H W 2011 Prog. Photovolt.: Res. Appl. 19 93

    [68]

    Wang C, Chen S, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411

    [69]

    Todorov T K, Reuter K B, Mitzi D B 2010 Adv. Mater. 22 E156

    [70]

    Redinger A, Siebentritt S 2010 Appl. Phys. Lett. 97 092111

    [71]

    Fontané X, Calvo-Barrio L, Izquierdo-Roca V, Saucedo E, Pérez-Rodriguez A, Morante J, Berg D, Dale P, Siebentritt S 2011 Appl. Phys. Lett. 98 181905

    [72]

    Just J, Ltzenkirchen-Hecht D, Frahm R, Schorr S, Unold T 2011 Appl. Phys. Lett. 99 262105

    [73]

    Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202

    [74]

    Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902

    [75]

    Chen S, Wang L W, Walsh A, Gong X G, Wei S H 2012 Appl. Phys. Lett. 101 223901

    [76]

    Schorr S, Hoebler H J, Tovar M 2007 Eur. J. Mineral. 19 65

    [77]

    Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A, Mitzi D, Guha S 2010 Appl. Phys. Lett. 97 143508

    [78]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt.: Res. Appl. 21 72

    [79]

    Collord A D, Hillhouse H W 2015 Chem. Mater. 27 1855

    [80]

    Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Yoshino K 2013 Appl. Phys. Lett. 103 112107

    [81]

    Levcenko S, Tezlevan V E, Arushanov E, Schorr S, Unold T 2012 Phys. Rev. B 86 045206

    [82]

    Shockley W, Read Jr W 1952 Phys. Rev. 87 835

    [83]

    Sites J, Pan J 2007 Thin Solid Films 515 6099

    [84]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [85]

    Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508

    [86]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903

    [87]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249

    [88]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [89]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674

    [90]

    Kim J, Lee S H, Lee J H, Hong K H 2014 J. Phys. Chem. Lett. 5 1312

    [91]

    Du M H 2014 J. Mater. Chem. A 2 9091

    [92]

    Duan H S, Zhou H, Chen Q, Sun P, Luo S, Song T B, Bob B, Yang Y 2015 Phys. Chem. Chem. Phys. 17 112

    [93]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281

    [94]

    Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570

  • [1] 李环娅, 周柯, 尹万健. 材料的非简谐性描述符.  , 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算.  , 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] 黄文军, 王亚平, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.208Ni0.333Co0.042Mn0.417O2的电子结构和缺陷性质.  , 2021, 70(20): 208201. doi: 10.7498/aps.70.20210398
    [5] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究.  , 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [6] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [7] 李恬静, 操秀霞, 唐士惠, 何林, 孟川民. 蓝宝石冲击消光晶向效应的第一性原理.  , 2020, 69(4): 046201. doi: 10.7498/aps.69.20190955
    [8] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究.  , 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [9] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [10] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [11] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [12] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究.  , 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [13] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究.  , 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [14] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究.  , 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [15] 忻晓桂, 陈香, 周晶晶, 施思齐. LiFePO4 晶格动力学性质的第一性原理研究.  , 2011, 60(2): 028201. doi: 10.7498/aps.60.028201
    [16] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [17] 张华, 唐元昊, 周薇薇, 李沛娟, 施思齐. LiFePO4中对位缺陷的第一性原理研究.  , 2010, 59(7): 5135-5140. doi: 10.7498/aps.59.5135
    [18] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究.  , 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [19] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算.  , 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [20] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算.  , 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
计量
  • 文章访问数:  7519
  • PDF下载量:  737
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-04
  • 修回日期:  2015-06-25
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map