搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性

刘畅 卢继武 吴汪然 唐晓雨 张睿 俞文杰 王曦 赵毅

引用本文:
Citation:

超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性

刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅

Gate length dependence of hot carrier injection degradation in short channel silicon on insulator planar MOSFET

Liu Chang, Lu Ji-Wu, Wu Wang-Ran, Tang Xiao-Yu, Zhang Rui, Yu Wen-Jie, Wang Xi, Zhao Yi
PDF
导出引用
  • 随着场效应晶体管(MOSFET)器件尺寸的进一步缩小和器件新结构的引入, 学术界和工业界对器件中热载流子注入(hot carrier injections, HCI)所引起的可靠性问题日益关注. 本文研究了超短沟道长度(L=30–150 nm)绝缘层上硅(silicon on insulator, SOI)场效应晶体管在HCI应力下的电学性能退化机理. 研究结果表明, 在超短沟道情况下, HCI 应力导致的退化随着沟道长度变小而减轻. 通过研究不同栅长器件的恢复特性可以看出, 该现象是由于随着沟道长度的减小, HCI应力下偏压温度不稳定性效应所占比例变大而导致的. 此外, 本文关于SOI器件中HCI应力导致的退化和器件栅长关系的结果与最近报道的鳍式场效晶体管(FinFET)中的结果相反. 因此, 在超短沟道情况下, SOI平面MOSFET器件有可能具有比FinFET器件更好的HCI可靠性.
    With the continued device scaling and the introduction of new device structures, MOSFET reliability phenomena arising from the hot carrier injection (HCI) stress have received extensive attention from both the academia and the industry community. In this work, the degradations of ultra-scaled silicon on insulator (SOI) MOSFETs under the HCI stress are investigated on devices of different gate lengths (L=30-150 nm). Our experimental data demonstrate that the time evolutions of the threshold voltage change (Vth) under the HCI stress for different gate length devices are the same, and the magnitude of Vth reduces for the shorter devices. The degradation of the device under the HCI stress should be due to both the channel hot carrier (CHC) effect and the bias temperature instability (BTI) effect. The distribution and magnitude of the electric field along the MOSFET's channel are analyzed. It is confirmed that besides the well-known CHC effect in the depletion region close to the drain side, a strong BTI effect co-exists in the channel close to the source side. This degradation mechanism is different from the conventional HCI stress. With the gate length decreasing, the contribution of the aforementioned BTI effect becomes larger, and it dominates in the degradation. One feature of the BTI effects is that the corresponding degradation is small when the gate length is short. This is consistent with our experimental result that the change of Vth is small for the device of short gate length under the accelerated HCI stress. The time evolution of Vth can be described by the equation Vth=A•tn, where A is a constant, t is the stress time, and n is the power law exponent obtained by the curve fitting. In this study, the power law exponent n of pMOSFET is larger than that of nMOSFET. This experimental fact can lead to the point that the BTI effect exists during the HCI stress because the BTI effect in ultra-scaled pMOSFETs is more significant than that in nMOSFETs. The stress-recover experiments of the HCI stress on MOSFTTs show larger recovery in device of shorter gate length. It is found that the ratio of the recovery to the total degradation in the 30 nm gate-length device is almost twice as large as that in the 150 nm device. The degradation from the CHC effect has no recovery, and the larger recovery in the shorter-channel device implies the larger component of the BTI degradation. Another intriguing fact is that our experimental result on SOI MOSFET is inconsistent with the recently reported result on FinFET. We argue that the reported stronger HCI degradation in FinFET may not be ascribed only to the stronger electric field in the shorter channel, but also to the fact that the FinFET' channel is three-dimensionally surrounded by the gate dielectric. This kind of three-dimensional structure significantly increases the chance for electrons or holes to be injected into the dielectric layer. Therefore the HCI reliability of planar SOI MOSFETs may be better than that of FinFETs at the same level of gate length. In conclusion, the BTI effect is an important source of the degradation during the HCI stress in ultra-short-channel device, and it is no more negligible in analyzing the underlying physical mechanism.
    • 基金项目: 国家重点基础研究发展规划(批准号: 2011CBA00607)、国家自然科学基金(批准号: 61376097)、浙江省自然科学基金(批准号: LR14F040001)和功能信息材料国家重点实验室开放课题(批准号: SKL201304)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00607), the National Natural Science Foundation of China (Grant No. 61376097), the Natural Science Foundation Zhejiang Province of China (Grant No. LR14F040001), and the Open Project of State Key Laboratory of Functional Materials for Informatics, China (Grant No. SKL201304).
    [1]

    Liu S E, Wang J S, Lu Y R, Huang D S, Huang C F, Hsieh W H, Lee J H, Tsai Y S, Shih J R, Lee Y H, Wu K 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 p4A.4.1

    [2]

    Zhao Y, Wan X G 2006 Acta Phys. Sin. 55 3003 (in Chinese) [赵毅, 万星拱 2006 55 3003]

    [3]

    Liang B, Chen J J, Chi Y Q 2014 Chin. Phys. B 23 117304

    [4]

    Chen J J, Chen S M, Liang B, He Y B, Chi Y Q, Deng K F 2011 Chin. Phys. B 20 114220

    [5]

    Ma X H, Cao Y R, Hao Y, Zhang Y 2011 Chin. Phys. B 20 037305

    [6]

    Lei X Y, Liu H X, Zhang K, Zhang Y, Zheng X F, Ma X H, Hao Y 2013 Chin. Phys. B 22 047304

    [7]

    Wu W R, Liu C, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electron Dev. Lett. 35 714

    [8]

    Miura Y, Matukura Y 1966 Jpn. J. Appl. Phys. 5 180

    [9]

    Ning T H, Cook P W, Dennard R H, Osburn C M, Schuster S E, Yu H N 1979 IEEE Trans. Electron Dev. 26 346

    [10]

    Amat E, Kauerauf T, Rodriguez R, Nafria M, Aymerich X, Degraeve R, Groeseneken G 2013 Microelectron. Eng. 103 144

    [11]

    Franco J, Kaczer B, Eneman G, Roussel P, Cho M, Mitard J, Witters L, Hoffmann T Y, Groeseneken G, Crupi F, Grasser T 2011 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 10-14, 2011 p6A.4.1

    [12]

    Ramey S, Hicks J, Liyanage L S, Novak S 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 pXT.2.1

    [13]

    Ramey S, Ashutosh A, Auth C, Clifford J, Hattendorf M, Hicks J, James R, Rahman A, Sharma V, Amour St A, Wiegand C 2013 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 14-18, 2013 p4C.5.1

    [14]

    Takeda E, Suzuki N 1983 IEEE Electron Dev. Lett. 4 111

    [15]

    Duan F, Ioannou D 1996 SOI Conference, 1996 Proceedings, 1996, IEEE International p18

    [16]

    Doyle B S, Mistry K R, Faricelli J 1997 IEEE Electron Dev. Lett. 18 51

    [17]

    Amat E, Kauerauf T, Degraeve R, Rodriguez R, Nafria M, Aymerich X, Groeseneken G 2009 IEEE Trans. Electron Dev. 9 454

    [18]

    Angot D, Huard V, Federspiel X, Cacho F, Bravaix A 2013 IEEE International Reliability Physics Symposium Anaheim, CA, United States, April 14-18,2013 p5D.2.1

    [19]

    Liao J C, Fang Y K, Hou Y T, Hung C L, Hsu P F, Lin K C, Huang K T, Lee T L, Liang M S 2008 Appl. Phys. Lett. 93 092101

    [20]

    Alam M, Mahapatra S 2005 Microelectron. Reliab. 45 71

  • [1]

    Liu S E, Wang J S, Lu Y R, Huang D S, Huang C F, Hsieh W H, Lee J H, Tsai Y S, Shih J R, Lee Y H, Wu K 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 p4A.4.1

    [2]

    Zhao Y, Wan X G 2006 Acta Phys. Sin. 55 3003 (in Chinese) [赵毅, 万星拱 2006 55 3003]

    [3]

    Liang B, Chen J J, Chi Y Q 2014 Chin. Phys. B 23 117304

    [4]

    Chen J J, Chen S M, Liang B, He Y B, Chi Y Q, Deng K F 2011 Chin. Phys. B 20 114220

    [5]

    Ma X H, Cao Y R, Hao Y, Zhang Y 2011 Chin. Phys. B 20 037305

    [6]

    Lei X Y, Liu H X, Zhang K, Zhang Y, Zheng X F, Ma X H, Hao Y 2013 Chin. Phys. B 22 047304

    [7]

    Wu W R, Liu C, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electron Dev. Lett. 35 714

    [8]

    Miura Y, Matukura Y 1966 Jpn. J. Appl. Phys. 5 180

    [9]

    Ning T H, Cook P W, Dennard R H, Osburn C M, Schuster S E, Yu H N 1979 IEEE Trans. Electron Dev. 26 346

    [10]

    Amat E, Kauerauf T, Rodriguez R, Nafria M, Aymerich X, Degraeve R, Groeseneken G 2013 Microelectron. Eng. 103 144

    [11]

    Franco J, Kaczer B, Eneman G, Roussel P, Cho M, Mitard J, Witters L, Hoffmann T Y, Groeseneken G, Crupi F, Grasser T 2011 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 10-14, 2011 p6A.4.1

    [12]

    Ramey S, Hicks J, Liyanage L S, Novak S 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 pXT.2.1

    [13]

    Ramey S, Ashutosh A, Auth C, Clifford J, Hattendorf M, Hicks J, James R, Rahman A, Sharma V, Amour St A, Wiegand C 2013 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 14-18, 2013 p4C.5.1

    [14]

    Takeda E, Suzuki N 1983 IEEE Electron Dev. Lett. 4 111

    [15]

    Duan F, Ioannou D 1996 SOI Conference, 1996 Proceedings, 1996, IEEE International p18

    [16]

    Doyle B S, Mistry K R, Faricelli J 1997 IEEE Electron Dev. Lett. 18 51

    [17]

    Amat E, Kauerauf T, Degraeve R, Rodriguez R, Nafria M, Aymerich X, Groeseneken G 2009 IEEE Trans. Electron Dev. 9 454

    [18]

    Angot D, Huard V, Federspiel X, Cacho F, Bravaix A 2013 IEEE International Reliability Physics Symposium Anaheim, CA, United States, April 14-18,2013 p5D.2.1

    [19]

    Liao J C, Fang Y K, Hou Y T, Hung C L, Hsu P F, Lin K C, Huang K T, Lee T L, Liang M S 2008 Appl. Phys. Lett. 93 092101

    [20]

    Alam M, Mahapatra S 2005 Microelectron. Reliab. 45 71

  • [1] 李璐, 张养坤, 时东霞, 张广宇. 单层二硫化钼的制备及在器件应用方面的研究.  , 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性.  , 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性.  , 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [5] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器.  , 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [6] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型.  , 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [7] 赵毅, 李骏康, 郑泽杰. 硅/锗基场效应晶体管沟道中载流子散射机制研究进展.  , 2019, 68(16): 167301. doi: 10.7498/aps.68.20191146
    [8] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管.  , 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [9] 魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇. 高质量单层二硫化钼薄膜的研究进展.  , 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [10] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [11] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究.  , 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [12] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展.  , 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [13] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势.  , 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [14] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性.  , 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [15] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应.  , 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [16] 骆扬, 王亚楠. 物理型硬件木马失效机理及检测方法.  , 2016, 65(11): 110602. doi: 10.7498/aps.65.110602
    [17] 刘红侠, 王志, 卓青青, 王倩琼. 总剂量辐照下沟道长度对部分耗尽绝缘体上硅p型场效应晶体管电特性的影响.  , 2014, 63(1): 016102. doi: 10.7498/aps.63.016102
    [18] 刘红侠, 尹湘坤, 刘冰洁, 郝跃. 应变绝缘层上硅锗p型金属氧化物场效应晶体管的阈值电压解析模型.  , 2010, 59(12): 8877-8882. doi: 10.7498/aps.59.8877
    [19] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性.  , 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [20] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性.  , 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
计量
  • 文章访问数:  7880
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-05
  • 修回日期:  2015-04-23
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map