搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有P型覆盖层新型超级结横向双扩散功率器件

李春来 段宝兴 马剑冲 袁嵩 杨银堂

引用本文:
Citation:

具有P型覆盖层新型超级结横向双扩散功率器件

李春来, 段宝兴, 马剑冲, 袁嵩, 杨银堂

New super junction lateral double-diffused metal-oxide-semiconductor field-effect transistor with the P covered layer

Li Chun-Lai, Duan Bao-Xing, Ma Jian-Chong, Yuan Song, Yang Yin-Tang
PDF
导出引用
  • 为了设计功率集成电路所需要的低功耗横向双扩散金属氧化物半导体器件(lateral double-diffused MOSFET), 在已有的N型缓冲层超级结LDMOS(N-buffered-SJ-LDMOS)结构基础上, 提出了一种具有P型覆盖层新型超级结LDMOS结构(P-covered-SJ-LDMOS). 这种结构不但能够消除传统的N沟道SJ-LDMOS由于P型衬底产生的衬底辅助耗尽问题, 使得超级结层的N区和P区的电荷完全补偿, 而且还能利用覆盖层的电荷补偿作用, 提高N型缓冲层浓度, 从而降低了器件的比导通电阻. 利用三维仿真软件ISE分析表明, 在漂移区长度均为10 μm的情况下, P-covered-SJ-LDMOS的比导通电阻较一般SJ-LDMOS结构降低了59%左右, 较文献提出的N型缓冲层 SJ-LDMOS(N-buffered-SJ-LDMOS)结构降低了43%左右.
    In order to design the lateral double-diffused metal-oxide-semiconductor field-effect transistor (LDMOS) with low loss required for a power integrated circuit, a new super junction LDMOS with the P covered layer which is based on the existing N buffered super junction LDMOS is proposed in this paper for the first time. The key feature of the proposed structure is that the P-type covered layer is partly above the N-type of the super junction layer, which is different from the N buffered super junction LDMOS. In this structure, the specific on-resistance of the device is reduced by using the high doped super junction layer; the problem of the substrate-assisted depletion which is produced due to the P-type substrate of the N-channel super junction LDMOS is eliminated by completely compensating for the charges of the N-type buffered layer and the P-type covered layer, thus improving the breakdown voltage. The charges of the N-type and P-type pillars are depleted completely. A new transmission path at the on-state is formed by N buffered layer to reduce the specific on-resistance, which is similar to the N buffered super junction LDMOS. However, the effect of N-type buffered layer of N buffered super junction LDMOS is not fully used. The drift region of the device is further optimized by the proposed device to reduce the specific on-resistance. The charge concentration of the N-type buffered layer in the proposed device is improved by the effect of charge compensation of the P covered layer. It is clear that high breakdown voltage and low specific on-resistance are realized in the proposed device by introducing the P-type covered layer and the N-type buffered layer. The results of the 3 D-ISE software suggest that when the drift region is on a scale of 10 μm, a specific on-resistance of 4.26 mΩ·cm2 obtained from P covered super junction LDMOS by introducing P covered layer and N buffered layer is reduced by about 59% compared with that of conventional super junction LDMOS which is 10.47 mΩ·cm2, and reduced by about 43% compared with that of N Buffered super junction LDMOS which is 7.46 mΩ·cm2.
    • 基金项目: 陕西省科技统筹创新工程计划(批准号: DF0105142502)、国家重点基础研究发展计划(批准号: 2014CB339900, 2015CB351906)和国家自然科学基金重点项目(批准号: 61234006, 61334002)资助的课题.
    • Funds: Project supported by the Science and Technology Innovation Project of Shaanxi Province, China (Grant No. DF0105142502), the National Basic Research Program of China (Grant Nos. 2014CB339900, 2015CB351906), and the Key Program of the National Natural Science Foundation of China (Grant Nos. 61234006, 61334002).
    [1]

    He Y D, Zhang G G, Zhang X 2014 Proceedings of the 17th International Power Semiconductor Devices and ICs Waikoloa, USA, June 15-19, 2014 p171

    [2]

    Kyungho L, Haeung J, Byunghee C, Joonhee C, Pang Y S, Jinwoo M, Susanna K 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs Kanazawa, May 26-30, 2013 p163

    [3]

    Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Dev. 47 1280

    [4]

    Chen X B, Johnny K O S 2001 IEEE Trans. Electron Dev. 48 344

    [5]

    Sameh G, Khalil N, Salama C A T 2003 IEEE Trans. Electron Dev. 50 1385

    [6]

    Sameh G, Khalil N, Li Z H, Salama C A T 2004 IEEE Trans. Electron Dev. 51 1185

    [7]

    Duan B X, Zhang B, Li Z J 2007 Chin. J. Semicond. 28 166

    [8]

    Park Y, Salama C T 2005 Proceedings of the 17th International Power Semiconductor Devices and ICs SantaBarbara, USA, May 26-30, 2005 p163

    [9]

    Zhang B, Chen L, Wu J, Li Z J 2005 International Conference on Communications, Circuits and System Hongkong, May 27-30, 2005 p1399

    [10]

    Wu W, Zhang B, Fang J, Luo X R, Li Z J 2013 Chin. Phys. B 22 068501

    [11]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Dev. Lett. 30 305

    [12]

    Duan B X, Yang Y T 2011 Micro. Nano Lett. 6 881

    [13]

    Duan B X, Cao Z, Yuan S, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 247301 (in Chinese) [段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂 2014 63 247301]

    [14]

    Duan B X, Cao Z, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 227302 (in Chinese) [段宝兴, 曹震, 袁小宁, 杨银堂 2014 63 227302]

    [15]

    Michael A, Vladimir R 1985 International Electron Devices Meeting Washington, USA, December 1-4, 1985 p736

    [16]

    ISE TCAD Manuals, Release 10.0, Synopsys Co., Switzerland

    [17]

    Park I Y, Choi Y K, Ko K Y, Yoon C J, Kim Y S, Kim M Y, Kim H T, Lim H C, Kim N J, Yoo K D 2009 Proceedingsof the 21th International Power Semiconductor Devices and ICs Barcelona, Spain, June 15-17, 2009 p192

    [18]

    Chen W J, Zhang B, Li Z J 2007 Chin. J. Semicond. 28 365

  • [1]

    He Y D, Zhang G G, Zhang X 2014 Proceedings of the 17th International Power Semiconductor Devices and ICs Waikoloa, USA, June 15-19, 2014 p171

    [2]

    Kyungho L, Haeung J, Byunghee C, Joonhee C, Pang Y S, Jinwoo M, Susanna K 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs Kanazawa, May 26-30, 2013 p163

    [3]

    Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Dev. 47 1280

    [4]

    Chen X B, Johnny K O S 2001 IEEE Trans. Electron Dev. 48 344

    [5]

    Sameh G, Khalil N, Salama C A T 2003 IEEE Trans. Electron Dev. 50 1385

    [6]

    Sameh G, Khalil N, Li Z H, Salama C A T 2004 IEEE Trans. Electron Dev. 51 1185

    [7]

    Duan B X, Zhang B, Li Z J 2007 Chin. J. Semicond. 28 166

    [8]

    Park Y, Salama C T 2005 Proceedings of the 17th International Power Semiconductor Devices and ICs SantaBarbara, USA, May 26-30, 2005 p163

    [9]

    Zhang B, Chen L, Wu J, Li Z J 2005 International Conference on Communications, Circuits and System Hongkong, May 27-30, 2005 p1399

    [10]

    Wu W, Zhang B, Fang J, Luo X R, Li Z J 2013 Chin. Phys. B 22 068501

    [11]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Dev. Lett. 30 305

    [12]

    Duan B X, Yang Y T 2011 Micro. Nano Lett. 6 881

    [13]

    Duan B X, Cao Z, Yuan S, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 247301 (in Chinese) [段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂 2014 63 247301]

    [14]

    Duan B X, Cao Z, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 227302 (in Chinese) [段宝兴, 曹震, 袁小宁, 杨银堂 2014 63 227302]

    [15]

    Michael A, Vladimir R 1985 International Electron Devices Meeting Washington, USA, December 1-4, 1985 p736

    [16]

    ISE TCAD Manuals, Release 10.0, Synopsys Co., Switzerland

    [17]

    Park I Y, Choi Y K, Ko K Y, Yoon C J, Kim Y S, Kim M Y, Kim H T, Lim H C, Kim N J, Yoo K D 2009 Proceedingsof the 21th International Power Semiconductor Devices and ICs Barcelona, Spain, June 15-17, 2009 p192

    [18]

    Chen W J, Zhang B, Li Z J 2007 Chin. J. Semicond. 28 365

  • [1] 刘骏杭, 朱照照, 毕林竹, 王鹏举, 蔡建旺. 重金属缓冲层和覆盖层对TbFeCo超薄膜磁性及热稳定性的影响.  , 2023, 72(7): 077501. doi: 10.7498/aps.72.20222239
    [2] 赵逸涵, 段宝兴, 袁嵩, 吕建梅, 杨银堂. 具有纵向辅助耗尽衬底层的新型横向双扩散金属氧化物半导体场效应晶体管.  , 2017, 66(7): 077302. doi: 10.7498/aps.66.077302
    [3] 宋建军, 包文涛, 张静, 唐昭焕, 谭开洲, 崔伟, 胡辉勇, 张鹤鸣. (100)Si基应变p型金属氧化物半导体[110]晶向电导率有效质量双椭球模型.  , 2016, 65(1): 018501. doi: 10.7498/aps.65.018501
    [4] 黄凌志, 肖勇, 温激鸿, 杨海滨, 温熙森. 一种含横向圆柱形空腔的声学覆盖层的去耦机理分析.  , 2015, 64(15): 154301. doi: 10.7498/aps.64.154301
    [5] 段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂. 阶梯氧化层新型折叠硅横向双扩散功率器件.  , 2015, 64(6): 067304. doi: 10.7498/aps.64.067304
    [6] 曹震, 段宝兴, 袁小宁, 杨银堂. 具有半绝缘多晶硅完全三维超结横向功率器件.  , 2015, 64(18): 187303. doi: 10.7498/aps.64.187303
    [7] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 王冠宇. 应变Si n型金属氧化物半导体场效应晶体管电荷模型.  , 2014, 63(1): 017101. doi: 10.7498/aps.63.017101
    [8] 刘伟峰, 宋建军. 应变(001)p型金属氧化物半导体反型层空穴量子化与电导率有效质量.  , 2014, 63(23): 238501. doi: 10.7498/aps.63.238501
    [9] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究.  , 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [10] 杨帅, 汤晓燕, 张玉明, 宋庆文, 张义门. 电荷失配对SiC半超结垂直双扩散金属氧化物半导体场效应管击穿电压的影响.  , 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [11] 石艳梅, 刘继芝, 姚素英, 丁燕红. 具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构.  , 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [12] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构.  , 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [13] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件.  , 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [14] 王斌, 张鹤鸣, 胡辉勇, 张玉明, 宋建军, 周春宇, 李妤晨. 应变SiGe p 型金属氧化物半导体场效应管栅电容特性研究.  , 2013, 62(12): 127102. doi: 10.7498/aps.62.127102
    [15] 王骁玮, 罗小蓉, 尹超, 范远航, 周坤, 范叶, 蔡金勇, 罗尹春, 张波, 李肇基. 高k介质电导增强SOI LDMOS机理与优化设计.  , 2013, 62(23): 237301. doi: 10.7498/aps.62.237301
    [16] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究.  , 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [17] 陈建军, 陈书明, 梁斌, 刘必慰, 池雅庆, 秦军瑞, 何益百. p型金属氧化物半导体场效应晶体管界面态的积累对单粒子电荷共享收集的影响.  , 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [18] 李伟华, 庄奕琪, 杜磊, 包军林. n型金属氧化物半导体场效应晶体管噪声非高斯性研究.  , 2009, 58(10): 7183-7188. doi: 10.7498/aps.58.7183
    [19] 张志勇, 王太宏. 单电子晶体管-金属氧化物半导体场效应晶体管多峰值负微分电阻器件.  , 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
    [20] 王剑屏, 徐娜军, 张廷庆, 汤华莲, 刘家璐, 刘传洋, 姚育娟, 彭宏论, 何宝平, 张正选. 金属-氧化物-半导体器件γ辐照温度效应.  , 2000, 49(7): 1331-1334. doi: 10.7498/aps.49.1331
计量
  • 文章访问数:  5993
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31
  • 修回日期:  2015-04-16
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map