搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腔光力学系统中的量子测量

陈雪 刘晓威 张可烨 袁春华 张卫平

引用本文:
Citation:

腔光力学系统中的量子测量

陈雪, 刘晓威, 张可烨, 袁春华, 张卫平

Quantum measurement with cavity optomechanical systems

Chen Xue, Liu Xiao-Wei, Zhang Ke-Ye, Yuan Chun-Hua, Zhang Wei-Ping
PDF
导出引用
  • 腔光力学系统近年来迅猛发展, 在精密测量、量子传感等方面已展现出重要的应用价值. 特别是与微纳技术和冷原子技术结合后, 这一系统正发展成为研究量子测量与量子操控的理想平台. 本文首先综述腔光力学在量子测量, 尤其是量子测量基础理论研究方面的进展; 然后分析腔光力学系统中的量子测量原理; 最后介绍我们近来在这方面的研究进展, 并通过我们设计的一系列新颖的基于腔光力学系统的量子测量方案来具体展示该系统在量子测量、量子操控等方面的潜在应用.
    Cavity optomechanics originated from the research of interferometric detection of gravitational waves, and later became a fast-growing area of techniques and approaches ranging from the fields of atomic, molecular, and optical physics to nano-science and condensed matter physics as well. Recently, it focused on the exploration of operating mechanical oscillators deep in the quantum regime, with an interest ranging from quantum-classical interface tests to high-precision quantum metrology. In this paper, recent theoretical work of our group in the field of quantum measurement with cavity optomechanical systems is reviewed. We explore the quantum measurement theory and its applications with several unconventional cavity optomechanical schemes working in the quantum regime. This review covers the basics of quantum noises in the cavity optomechanical setups and the resulting standard quantum limit of precision displacement and force measurement. Three novel quantum measurement proposals based on the hybrid optomechanical system are introduced. First, we describe a quantum back-action insulated weak force sensor. It is realized by forming a quantum-mechanics-free subsystem with two optomechanical oscillators of reversed effective mass. Then we introduce a role-reversed atomic optomechanical system which enables the preparation and the quantum tomography of a variety of non-classical states of atoms. In this system, the cavity field acts as a mechanical oscillator driven by the radiation pressure force from an ultracold atomic field. In the end, we recommend a multimode optomechanical transducer that can detect intensities significantly below the single-photon level via adiabatic transfer of the microwave signal to the optical frequency domain. These proposals demonstrate the possible applications of optomechanical devices in understanding of quantum-classical crossover and in achieving quantum measurement limit.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB921604)、国家自然科学基金(批准号: 11204084, 11234003, 11129402, 11474095, 91436211)、高等学校博士学科点专项科研基金(批准号: 20120076120003)、上海自然科学基金(批准号: 12ZR1443400)和中央高校基本科研业务费资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB921604), the National Natural Science Foundation of China (Grant Nos. 11204084, 11234003, 11129402, 11474095, 91436211), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120076120003), the Shanghai Foundation for Development of Science and Technology, China (Grant No. 12ZR1443400), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Yuan C H, Zhang K Y, Zhang W P 2014 Sci. China Inform. Sci. 44 345 (in Chinese) [袁春华, 张可烨, 张卫平 2014 中国科学:信息科学 44 345]

    [2]

    Braginsky V B, Vorontsov Y L, Thorne K S 1980 Science 209 547

    [3]

    Caves C M, et al. 1980 Rev. Mod. Phys. 52 341

    [4]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [5]

    Marquardt F, Girvin S M 2009 Physics 2 40

    [6]

    Meystre P 2013 Ann. Phys. 525 215

    [7]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photon. 6 768

    [8]

    Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Rubinsztein-Dunlop H 2012 Phys. Rev. Lett. 108 120801

    [9]

    Murch K W, Moore K L, Gupta S, Stamper-Kurn D M 2008 Nat. Phys. 4 561

    [10]

    Caves C M 1981 Phys. Rev. D 23 1693

    [11]

    Hoff U B, Harris G I, Madsen L S, Kerdoncuff H, Lassen M, Nielsen B M, Bowen W P, Andersen U L 2013 Opt. Lett. 38 1413

    [12]

    Aasi J, et al. 2013 Nat. Photon. 7 613

    [13]

    Mancini S, Vitali D, Tombesi P 1998 Phys. Rev. Lett. 80 688

    [14]

    Zhang W P, et al. 2014 Advances in Quantum Optics (Shanghai: Shanghai Jiao Tong University Press) p132 (in Chinese) [张卫平 等 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第132页]

    [15]

    Braginsky V B, Khalili F Y 1992 Quantum Measurement (Cambridge: Cambridge University Press)

    [16]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

    [17]

    Milburn G J, Woolley M J

    [18]

    Schliesser A, Arcizet O, Riviere R, Kippenberg T J 2009 Nat. Phys. 5 509

    [19]

    Tsang M, Caves C M

    [20]

    Zhang K Y, Meystre P, Zhang W P 2013 Phys. Rev. A 88 043632

    [21]

    Clerk A A, Marquardt F, Jacobs K 2008 New J. Phys. 10 95010

    [22]

    Fink J M, Steffen L, Studer P, et al. 2010 Phys. Rev. Lett. 105 163601

    [23]

    Hammerer K, Aspelmeyer M, Polzik E S, Zoller P 2009 Phys. Rev. Lett. 102 020501

    [24]

    Leibfried D, Meekhof D M, King B E, Monroe C, Itano W M, Wineland D J 1996 Phys. Rev. Lett. 77 4281

    [25]

    Deléglise S, Dotsenko I, Sayrin C, Bernu J, Brune M, Raimond J M, Haroche S 2008 Nature 455 510

    [26]

    Zhang K Y, Meystre P, Zhang W P 2012 Phys. Rev. Lett. 108 240405

    [27]

    Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235

    [28]

    Mancini S, Ma'nko V I, Tombesi P 1997 Phys. Rev. A 55 3042

    [29]

    Bose S, Jacobs K, Knight P L 1997 Phys. Rev. A 56 4175

    [30]

    Gross C, Strobel H, Nicklas E, Zibold T, Bar-Gill N, Kurizki G, Oberthaler M K 2011 Nature 480 219

    [31]

    Komiyama S, Astafiev O, Antonov V, Kutsuwa T, Hirai H 2000 Nature 403 405

    [32]

    Houck A A, Schuster D I, Gambetta J M, et al. 2007 Nature 449 328

    [33]

    Guerlin C, Bernu J, Deleglise S, et al. 2007 Nature 448 889

    [34]

    Bozyigit D, Lang C, Steffen L, et al. 2011 Nat. Phys. 7 154

    [35]

    Chunnilall C J, Degiovanni I P, Kück S, Müller I, Sinclair A G 2014 Opt. Eng. 53 081910

    [36]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603

    [37]

    Tian L 2012 Phys. Rev. Lett. 108 153604

    [38]

    Andrews R W, Peterson R W, Purdy T P, et al. 2014 Nat. Phys. 10 321

    [39]

    Bochmann J, Vainsencher A, Awschalom D D, Cleland A N 2013 Nat. Phys. 9 712

    [40]

    Zhang K Y, Bariani F, Dong Y, Zhang W P, Meystre P 2015 Phys. Rev. Lett. 114 113601

    [41]

    Andrews R W, Peterson R W, Purdy T P, et al. 2014 Nat. Phys. 10 321

    [42]

    Bochmann J, Vainsencher A, Awschalom D D, Cleland A N 2013 Nat. Phys. 9 712

  • [1]

    Yuan C H, Zhang K Y, Zhang W P 2014 Sci. China Inform. Sci. 44 345 (in Chinese) [袁春华, 张可烨, 张卫平 2014 中国科学:信息科学 44 345]

    [2]

    Braginsky V B, Vorontsov Y L, Thorne K S 1980 Science 209 547

    [3]

    Caves C M, et al. 1980 Rev. Mod. Phys. 52 341

    [4]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [5]

    Marquardt F, Girvin S M 2009 Physics 2 40

    [6]

    Meystre P 2013 Ann. Phys. 525 215

    [7]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photon. 6 768

    [8]

    Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Rubinsztein-Dunlop H 2012 Phys. Rev. Lett. 108 120801

    [9]

    Murch K W, Moore K L, Gupta S, Stamper-Kurn D M 2008 Nat. Phys. 4 561

    [10]

    Caves C M 1981 Phys. Rev. D 23 1693

    [11]

    Hoff U B, Harris G I, Madsen L S, Kerdoncuff H, Lassen M, Nielsen B M, Bowen W P, Andersen U L 2013 Opt. Lett. 38 1413

    [12]

    Aasi J, et al. 2013 Nat. Photon. 7 613

    [13]

    Mancini S, Vitali D, Tombesi P 1998 Phys. Rev. Lett. 80 688

    [14]

    Zhang W P, et al. 2014 Advances in Quantum Optics (Shanghai: Shanghai Jiao Tong University Press) p132 (in Chinese) [张卫平 等 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第132页]

    [15]

    Braginsky V B, Khalili F Y 1992 Quantum Measurement (Cambridge: Cambridge University Press)

    [16]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

    [17]

    Milburn G J, Woolley M J

    [18]

    Schliesser A, Arcizet O, Riviere R, Kippenberg T J 2009 Nat. Phys. 5 509

    [19]

    Tsang M, Caves C M

    [20]

    Zhang K Y, Meystre P, Zhang W P 2013 Phys. Rev. A 88 043632

    [21]

    Clerk A A, Marquardt F, Jacobs K 2008 New J. Phys. 10 95010

    [22]

    Fink J M, Steffen L, Studer P, et al. 2010 Phys. Rev. Lett. 105 163601

    [23]

    Hammerer K, Aspelmeyer M, Polzik E S, Zoller P 2009 Phys. Rev. Lett. 102 020501

    [24]

    Leibfried D, Meekhof D M, King B E, Monroe C, Itano W M, Wineland D J 1996 Phys. Rev. Lett. 77 4281

    [25]

    Deléglise S, Dotsenko I, Sayrin C, Bernu J, Brune M, Raimond J M, Haroche S 2008 Nature 455 510

    [26]

    Zhang K Y, Meystre P, Zhang W P 2012 Phys. Rev. Lett. 108 240405

    [27]

    Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235

    [28]

    Mancini S, Ma'nko V I, Tombesi P 1997 Phys. Rev. A 55 3042

    [29]

    Bose S, Jacobs K, Knight P L 1997 Phys. Rev. A 56 4175

    [30]

    Gross C, Strobel H, Nicklas E, Zibold T, Bar-Gill N, Kurizki G, Oberthaler M K 2011 Nature 480 219

    [31]

    Komiyama S, Astafiev O, Antonov V, Kutsuwa T, Hirai H 2000 Nature 403 405

    [32]

    Houck A A, Schuster D I, Gambetta J M, et al. 2007 Nature 449 328

    [33]

    Guerlin C, Bernu J, Deleglise S, et al. 2007 Nature 448 889

    [34]

    Bozyigit D, Lang C, Steffen L, et al. 2011 Nat. Phys. 7 154

    [35]

    Chunnilall C J, Degiovanni I P, Kück S, Müller I, Sinclair A G 2014 Opt. Eng. 53 081910

    [36]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603

    [37]

    Tian L 2012 Phys. Rev. Lett. 108 153604

    [38]

    Andrews R W, Peterson R W, Purdy T P, et al. 2014 Nat. Phys. 10 321

    [39]

    Bochmann J, Vainsencher A, Awschalom D D, Cleland A N 2013 Nat. Phys. 9 712

    [40]

    Zhang K Y, Bariani F, Dong Y, Zhang W P, Meystre P 2015 Phys. Rev. Lett. 114 113601

    [41]

    Andrews R W, Peterson R W, Purdy T P, et al. 2014 Nat. Phys. 10 321

    [42]

    Bochmann J, Vainsencher A, Awschalom D D, Cleland A N 2013 Nat. Phys. 9 712

  • [1] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛. 基于双光子干涉的量子全息理论框架.  , 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [2] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应.  , 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [3] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用.  , 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [4] 尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 牛智川. 量子点单光子源的光纤耦合.  , 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [5] 张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂. 单光子调制频谱用于量子点荧光寿命动力学的研究.  , 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [6] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性.  , 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [7] 苗强, 李响, 吴德伟, 罗均文, 魏天丽, 朱浩男. 量子微波制备方法与实验研究进展.  , 2019, 68(7): 070302. doi: 10.7498/aps.68.20191981
    [8] 张秀龙, 鲍倩倩, 杨明珠, 田雪松. 双腔光力学系统中输出光场纠缠特性的研究.  , 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [9] 石永强, 孔维龙, 吴仁存, 张文轩, 谭磊. 耗散耦合腔阵列耦合量子化腔场驱动三能级体系中的单光子输运.  , 2017, 66(5): 054204. doi: 10.7498/aps.66.054204
    [10] 林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫. 用推广的量子轨迹蒙特卡罗方法研究强场光电子全息.  , 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [11] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感.  , 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [12] 孙恒信, 刘奎, 张俊香, 郜江瑞. 基于压缩光的量子精密测量.  , 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [13] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟.  , 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [14] 李园, 窦秀明, 常秀英, 倪海桥, 牛智川, 孙宝权. 基于InAs单量子点的单光子干涉.  , 2011, 60(3): 037809. doi: 10.7498/aps.60.037809
    [15] 李园, 窦秀明, 常秀英, 倪海桥, 牛智川, 孙宝权. InAs 单量子点中级联辐射光子的关联测量.  , 2011, 60(1): 017804. doi: 10.7498/aps.60.017804
    [16] 焦荣珍, 冯晨旭, 马海强. 1.55 μm升频单光子探测量子密钥分配系统的性能研究.  , 2008, 57(3): 1352-1355. doi: 10.7498/aps.57.1352
    [17] 胡学宁, 李新奇. 量子点接触对单电子量子态的量子测量.  , 2006, 55(7): 3259-3264. doi: 10.7498/aps.55.3259
    [18] 戴 涛, 刘玉资, 张 泽. 电子全息方法测定GaN/AlGaN多量子阱结构的极性.  , 2006, 55(11): 5829-5834. doi: 10.7498/aps.55.5829
    [19] 黄仙山, 谢双媛, 羊亚平. 量子测量对三维光子晶体中Λ型原子动力学性质的影响.  , 2006, 55(5): 2269-2274. doi: 10.7498/aps.55.2269
    [20] 彭双艳, 黄 涛, 王晓波, 邵军虎, 肖连团, 贾锁堂. 基于光子统计测量的单分子判别.  , 2005, 54(11): 5116-5120. doi: 10.7498/aps.54.5116
计量
  • 文章访问数:  11225
  • PDF下载量:  914
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-11
  • 修回日期:  2015-07-30
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map