搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属原子的光激发与光电离

戚晓秋 汪峰 戴长建

引用本文:
Citation:

碱金属原子的光激发与光电离

戚晓秋, 汪峰, 戴长建

Photoexcitation and photoionization of alkali atoms

Qi Xiao-Qiu, Wang Feng, Dai Chang-Jian
PDF
导出引用
  • 本文研究了碱金属原子在三步激光脉冲作用下的光激发和光电离过程的动力学特性, 重点关注和比较了锂和铯原子的异同. 针对多种激发模式, 本文不但建立了其原子布居数在各个跃迁态的速率方程组, 还给出了各相关态的光激发和光电离过程的解析解. 通过精心设计并选择了特殊情况, 显著简化了解析解的数学表达式, 从而凸显和讨论了其物理内涵. 通过自行编程, 系统地计算和观察了各种激发模式对锂原子的光激发和光电离过程的可能影响, 研究和讨论了电离率随激光参数的变化规律. 在相同激发模式下, 比较和分析了采用两种不同激发路径所导致的各态原子布居率的变化, 凸显了改变原子参数所产生的作用. 探讨了锂和铯原子在类似的激发条件下在电离率方面的差别. 最后, 基于本文的研究结果, 本文指出了优化电离率的多种途径.
    The dynamical process of photoexcitation and photoionization of alkali atoms is studied with three-step laser pulses, focusing on the similarities and differences between Li and Cs atoms on their properties by making a comparison of them. Based on several excitation schemes, the present work not only establishes the rate equations of atom population for all related transition states, but also obtains the analytical solutions of photoexcitation and photoionization process. The mathematical solutions are simplified significantly by restricting the most general case to the several special cases, either designed or selected carefully, in order to highlight the main factors and obtain the physical insight underlying the complicated mathematical expressions. With self-programming, the possible impact of time configuration of laser pulses on the three-step laser excitation process of the photoexcitation and photoionization is calculated and studied systematically. Variation of the ionization efficiency with the laser parameters is investigated and discussed. With the same time configuration of laser pulses, the dependences of atom population for all the related transition states on the two different excitation paths are compared and analyzed, reflecting the impact of changing the atomic parameters. Under the similar excitation conditions, the differences of ionization efficiency between Li and Cs atoms are explored. Finally, based on the present study, several means for optimizing ionization efficiency are proposed.
    • 基金项目: 国家自然科学基金(批准号:11174218)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174218).
    [1]

    Santori C, Tamarat P, Neumann P 2006 Phys. Rev. Lett. 97 247401

    [2]

    Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Hulin D 2004 Phys. Rev. Lett. 93 135005

    [3]

    Jochim S, Bartenstein M, Hendl G, Denschlag J H, Grimm R, Mosk A, Weidemller M 2002 Phys. Rev. Lett. 89 273202

    [4]

    Saleh M F, Chang W, Hölzer P 2011 Phys. Rev. Lett. 107 203902

    [5]

    Klnder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guénot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taïeb R, L'Huillier A 2011 Phys. Rev. Lett. 106 143002

    [6]

    Posthumus J H 2004 Rep. Prog. Phys. 67 623

    [7]

    Ding D S, Zhou Z Y, Shi B S 2013 Chin. Phys. B 22 114203

    [8]

    Sinitskiy A V, Greenman L, Mazziotti D A 2010 J. Chem. Phys. 133 014104

    [9]

    Kheifets A S, Ipatov A, Arifin M, Bray I 2000 Phys. Rev. A 62 052724

    [10]

    Gillespie D T 2001 J. Chem. Phys. 115 1716

    [11]

    Mas D L, Valls E, Sedano L A, Batet L, Ricapito I, Aiello A, Gastaldi O, Gabriel F 2008 J. Nucl. Mater. 376 353

    [12]

    Challa S R, Sholl D S, Johnson J K 2001 Phys. Rev. B 63 245419

    [13]

    Santra S, Yang H, Holloway P H, Stanley J T, Mericle R A 2005 J. Am. Chem. Soc. 127 1656

    [14]

    Zhao L B, Fabrikant I I, Delos J B, Lepine F, Cohen S, Bordas C 2012 Phys. Rev. A 85 053421

    [15]

    Sang C C, Wan J J, Dong C Z, Ding X B, Jiang J 2008 Acta Phys. Sin. 57 2152 (in Chinese) [桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋军 2008 57 2152]

    [16]

    Zhang L, Shang R C, Xu S D 1992 Acta Phys. Sin. 41 379 (in Chinese) [张力, 尚仁成, 徐四大 1992 41 379]

    [17]

    Wang C L, Sun R P, Chen Y J, Gong C, Lai X Y, Kang H P, Quan W, Liu X J 2014 Chin. Phys. Lett. 31 063202

    [18]

    Haan S L, Wheeler P S, Panfili R, Eberly J H 2002 Phys. Rev. A 66 061402

    [19]

    Zeng S L, Zou S Y, Wang J G, Yan J 2009 Acta Phys. Sin. 58 8180 (in Chinese) [曾思良, 邹士阳, 王建国, 颜君 2009 58 8180]

    [20]

    Wang Z D, Wang L, Fan X J, Tan X 2010 Chin. Phys. B 19 064211

  • [1]

    Santori C, Tamarat P, Neumann P 2006 Phys. Rev. Lett. 97 247401

    [2]

    Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Hulin D 2004 Phys. Rev. Lett. 93 135005

    [3]

    Jochim S, Bartenstein M, Hendl G, Denschlag J H, Grimm R, Mosk A, Weidemller M 2002 Phys. Rev. Lett. 89 273202

    [4]

    Saleh M F, Chang W, Hölzer P 2011 Phys. Rev. Lett. 107 203902

    [5]

    Klnder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guénot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taïeb R, L'Huillier A 2011 Phys. Rev. Lett. 106 143002

    [6]

    Posthumus J H 2004 Rep. Prog. Phys. 67 623

    [7]

    Ding D S, Zhou Z Y, Shi B S 2013 Chin. Phys. B 22 114203

    [8]

    Sinitskiy A V, Greenman L, Mazziotti D A 2010 J. Chem. Phys. 133 014104

    [9]

    Kheifets A S, Ipatov A, Arifin M, Bray I 2000 Phys. Rev. A 62 052724

    [10]

    Gillespie D T 2001 J. Chem. Phys. 115 1716

    [11]

    Mas D L, Valls E, Sedano L A, Batet L, Ricapito I, Aiello A, Gastaldi O, Gabriel F 2008 J. Nucl. Mater. 376 353

    [12]

    Challa S R, Sholl D S, Johnson J K 2001 Phys. Rev. B 63 245419

    [13]

    Santra S, Yang H, Holloway P H, Stanley J T, Mericle R A 2005 J. Am. Chem. Soc. 127 1656

    [14]

    Zhao L B, Fabrikant I I, Delos J B, Lepine F, Cohen S, Bordas C 2012 Phys. Rev. A 85 053421

    [15]

    Sang C C, Wan J J, Dong C Z, Ding X B, Jiang J 2008 Acta Phys. Sin. 57 2152 (in Chinese) [桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋军 2008 57 2152]

    [16]

    Zhang L, Shang R C, Xu S D 1992 Acta Phys. Sin. 41 379 (in Chinese) [张力, 尚仁成, 徐四大 1992 41 379]

    [17]

    Wang C L, Sun R P, Chen Y J, Gong C, Lai X Y, Kang H P, Quan W, Liu X J 2014 Chin. Phys. Lett. 31 063202

    [18]

    Haan S L, Wheeler P S, Panfili R, Eberly J H 2002 Phys. Rev. A 66 061402

    [19]

    Zeng S L, Zou S Y, Wang J G, Yan J 2009 Acta Phys. Sin. 58 8180 (in Chinese) [曾思良, 邹士阳, 王建国, 颜君 2009 58 8180]

    [20]

    Wang Z D, Wang L, Fan X J, Tan X 2010 Chin. Phys. B 19 064211

  • [1] 贾韫哲, 孟胜. 光激发下水体系的超快动力学.  , 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [2] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响.  , 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [3] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241378
    [4] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析.  , 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [5] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷. 光电离过程中Fe靶和V靶特征辐射的角相关研究.  , 2020, 69(4): 043201. doi: 10.7498/aps.69.20191524
    [6] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究.  , 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [7] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究.  , 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [8] 卢肖勇, 张小章, 张志忠. 厚原子蒸气介质中原子选择性光电离的理论研究.  , 2018, 67(8): 083202. doi: 10.7498/aps.67.20172340
    [9] 卢肖勇, 张小章, 张志忠. 吸收谱线Doppler展宽对原子多步光电离的影响.  , 2017, 66(19): 193201. doi: 10.7498/aps.66.193201
    [10] 王鹿霞, 常凯楠. 异质结电荷转移的密度矩阵理论近似研究.  , 2014, 63(13): 137302. doi: 10.7498/aps.63.137302
    [11] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量.  , 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [12] 陈浩然, 杨林安, 朱樟明, 林志宇, 张进成. 基于AlGaN/GaN共振隧穿二极管的退化现象的研究.  , 2013, 62(21): 217301. doi: 10.7498/aps.62.217301
    [13] 单晓斌, 赵玉杰, 孔蕊弘, 王思胜, 盛六四, 黄明强, 王振亚. ArCO团簇光电离的实验和理论研究.  , 2013, 62(5): 053602. doi: 10.7498/aps.62.053602
    [14] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算.  , 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [15] 王向丽, 董晨钟, 桑萃萃. Ne原子的1s光电离及其Auger衰变过程的理论研究.  , 2009, 58(8): 5297-5303. doi: 10.7498/aps.58.5297
    [16] 陈 民, 盛政明, 张 杰. 激光脉冲在气体中产生的离化波前的演化及其对光脉冲传播的影响.  , 2006, 55(1): 337-343. doi: 10.7498/aps.55.337
    [17] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [18] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究.  , 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [19] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数.  , 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [20] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数.  , 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
计量
  • 文章访问数:  8029
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-25
  • 修回日期:  2015-02-05
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map