搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ArCO团簇光电离的实验和理论研究

单晓斌 赵玉杰 孔蕊弘 王思胜 盛六四 黄明强 王振亚

引用本文:
Citation:

ArCO团簇光电离的实验和理论研究

单晓斌, 赵玉杰, 孔蕊弘, 王思胜, 盛六四, 黄明强, 王振亚

Experimental and theoretical study of ArCO cluster

Shan Xiao-Bin, Zhao Yu-Jie, Kong Rui-Hong, Wang Si-Sheng, Sheng Liu-Si, Huang Ming-Qiang, Wang Zhen-Ya
PDF
导出引用
  • 利用同步辐射光电离质谱装置,测量了ArCO范德瓦尔斯 (van der Waals, vdW) 团簇的的光电离质谱和光电离效率曲线.将它们与CO分子的绝对光吸收光谱比较, 发现在13.9到14.6 eV能量范围内的ArCO+的光电离效率曲线主要反映了收敛到 CO+ (X2+, v'= 1,2和3) Rydberg系列和收敛到 CO+ (A2)的n= 3的振动序列(v'= 69)的特点; 在14.615.75 eV光子能量范围内的ArCO的光电离效率曲线主要反映了CO的光吸收特性. 然而,由于Ar和CO之间的相互作用,其中的5个重要的光谱结构发生了蓝移; 而在15.7515.80 eV光子能量范围内的Ar-CO的光电离效率曲线,它的属性受到组分Ar和CO的共同影响. 与此同时,也从理论上计算了ArCO团簇的电离能、ArCO团簇和ArCO+ 团簇离子的离解能.
    The photoionization mass spectra and photoionization efficiency curves of ArCO clusters are obtained with synchrotron radiation mass spectrometry. By comparison with absolute photoabsorption spectra of CO, the photoionization efficiency curve of ArCO clusters in an energy region from 13.9 to 14.6 eV reflects mainly the properties of Rydberg series converging to the X2+ (v+= 1, 2 and 3) of CO+, and these of n= 3 vibration sequence of the series converging to the A2 state of CO+. In the energy region from 14.6 to 15.75 eV, the curve reflects mainly the absorption property of CO, but its five strong peaks shift toward blue due to the interaction between Ar and CO. In an energy region from 15.75 to 15.80 eV, the curve reflects mainly the absorption properties of Ar and CO. At the same time, ionization energy of ArCO, and dissociation energies of ArCO and ArCO + are also calculated using the theory of quantum chemistry.
    • 基金项目: 国家自然科学基金(批准号: 10374048)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10374048).
    [1]

    Jortner J, Scharf D, Landman U 1988 Proceedings for the 13th International School (Berlin, West Germany: Springer-Verlag) p148

    [2]

    Chatasinski G, Szczesniak M M 1994 Chem. Rev. 94 1723

    [3]

    Castleman Jr A W, Bowen Jr K H 1996 J. Phys. Chem. 100 12911

    [4]

    Kukawska-Tamawka B, Chafasinski G 1994 Chem. Phys. 101 4964

    [5]

    Lotrich V F, Avird A V D 2002 J. Chem. Phys. 118 1110

    [6]

    Havenith M, Schaab G W 2005 Z. Phys.Chem. 219 1053

    [7]

    Ogata T, Jaeger W, Ozier I, Gerry M C 1993 J. Chem. Phys. 96 9399

    [8]

    Cheele I, Havenith M 2003 Mol. Phys. 101 1423

    [9]

    Maehnert J, Baumgaertel H, Weitzel K M 1997 J. Chem. Phys. 107 6667

    [10]

    Norwood K, Guo J H, C Y N G 1989 Chemical Physics 129 109

    [11]

    Weitzel K M, Maehnert J 2002 Internal J. Mass spectrometry 214 175

    [12]

    Toczylowski R R, Cybulski S M 2000 J. Chem. Phys. 112 4604

    [13]

    Weitzel K M 1998 Chem. Phys. 237 43

    [14]

    Shin S, Shin S K, Tao F M 1996 J. Chem. Phys. 104 183

    [15]

    Gianturco F A, Paesani F 2001 J. Chem. Phys. 115 249

    [16]

    Castells V, Halberstdt N, Shin S K, Beaudet R A, Wittig C 1994 J. Chem. Phys. 101 1006

    [17]

    Cacheiro J L, Fernandez B, Pederson T B, Koch H 2003 J. Chem. Phys. 118 9596

    [18]

    Castejon H J, Salazar M C, Paz J L, Hernandez A J 2006 J. Molecular Structure: Theochem 801 1

    [19]

    Cacheiro J L, Fernandez B, Rizzo A, Jansik B, Pederson T B 2008 Mol. Phys. 106 881

    [20]

    Wang S S, Kong R H, Shan X B, Zhang Y W, Sheng L S, Wang Z Y, Hao L Q, Zhou S K 2006 Journal of Synchrotron Radiation 13 415

    [21]

    Gaussian 03, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr. J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, PopleBarone J A, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A 2003 Gaussian, Inc. Pittsburgh P A

    [22]

    Zhao Y J, Wang S S, Shan X B, Sheng L S, Hao L Q, Wang Z Y 2011 Acta Phys. Sin. 60 1 (in Chinese) [赵玉杰, 王思胜, 单晓斌, 盛六四, 郝立庆, 王振亚 2011 60 1]

    [23]

    Hardis J E, Ferrett T A, Southworth S H, Parr A C, Roy P, Dehmer J L, Dehmer P M, Chupka W A 1988 J. Chem. Phys. 89 812

  • [1]

    Jortner J, Scharf D, Landman U 1988 Proceedings for the 13th International School (Berlin, West Germany: Springer-Verlag) p148

    [2]

    Chatasinski G, Szczesniak M M 1994 Chem. Rev. 94 1723

    [3]

    Castleman Jr A W, Bowen Jr K H 1996 J. Phys. Chem. 100 12911

    [4]

    Kukawska-Tamawka B, Chafasinski G 1994 Chem. Phys. 101 4964

    [5]

    Lotrich V F, Avird A V D 2002 J. Chem. Phys. 118 1110

    [6]

    Havenith M, Schaab G W 2005 Z. Phys.Chem. 219 1053

    [7]

    Ogata T, Jaeger W, Ozier I, Gerry M C 1993 J. Chem. Phys. 96 9399

    [8]

    Cheele I, Havenith M 2003 Mol. Phys. 101 1423

    [9]

    Maehnert J, Baumgaertel H, Weitzel K M 1997 J. Chem. Phys. 107 6667

    [10]

    Norwood K, Guo J H, C Y N G 1989 Chemical Physics 129 109

    [11]

    Weitzel K M, Maehnert J 2002 Internal J. Mass spectrometry 214 175

    [12]

    Toczylowski R R, Cybulski S M 2000 J. Chem. Phys. 112 4604

    [13]

    Weitzel K M 1998 Chem. Phys. 237 43

    [14]

    Shin S, Shin S K, Tao F M 1996 J. Chem. Phys. 104 183

    [15]

    Gianturco F A, Paesani F 2001 J. Chem. Phys. 115 249

    [16]

    Castells V, Halberstdt N, Shin S K, Beaudet R A, Wittig C 1994 J. Chem. Phys. 101 1006

    [17]

    Cacheiro J L, Fernandez B, Pederson T B, Koch H 2003 J. Chem. Phys. 118 9596

    [18]

    Castejon H J, Salazar M C, Paz J L, Hernandez A J 2006 J. Molecular Structure: Theochem 801 1

    [19]

    Cacheiro J L, Fernandez B, Rizzo A, Jansik B, Pederson T B 2008 Mol. Phys. 106 881

    [20]

    Wang S S, Kong R H, Shan X B, Zhang Y W, Sheng L S, Wang Z Y, Hao L Q, Zhou S K 2006 Journal of Synchrotron Radiation 13 415

    [21]

    Gaussian 03, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr. J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, PopleBarone J A, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A 2003 Gaussian, Inc. Pittsburgh P A

    [22]

    Zhao Y J, Wang S S, Shan X B, Sheng L S, Hao L Q, Wang Z Y 2011 Acta Phys. Sin. 60 1 (in Chinese) [赵玉杰, 王思胜, 单晓斌, 盛六四, 郝立庆, 王振亚 2011 60 1]

    [23]

    Hardis J E, Ferrett T A, Southworth S H, Parr A C, Roy P, Dehmer J L, Dehmer P M, Chupka W A 1988 J. Chem. Phys. 89 812

  • [1] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望.  , 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [2] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响.  , 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [3] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241378
    [4] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷. 光电离过程中Fe靶和V靶特征辐射的角相关研究.  , 2020, 69(4): 043201. doi: 10.7498/aps.69.20191524
    [5] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究.  , 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [6] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究.  , 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [7] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术.  , 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [8] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离.  , 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [9] 李一丁, 张鹏飞, 张辉, 徐宏亮. 电子磁矩对同步辐射频谱的修正.  , 2013, 62(9): 094103. doi: 10.7498/aps.62.094103
    [10] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算.  , 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [11] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究.  , 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [12] 王向丽, 董晨钟, 桑萃萃. Ne原子的1s光电离及其Auger衰变过程的理论研究.  , 2009, 58(8): 5297-5303. doi: 10.7498/aps.58.5297
    [13] 汪 敏, 岑豫皖, 胡小方, 余晓流, 朱佩平. 同步辐射计算机断层技术光源误差机理分析.  , 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [14] 郭小云, 石才土, 张久昶, 辛洪兵. 永磁扭摆磁铁的同步辐射特性和结构分析.  , 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [15] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数.  , 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [16] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究.  , 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] 邹崇文, 孙 柏, 王国栋, 张文华, 徐彭寿, 潘海斌, 徐法强, 尹志军, 邱 凯. 低覆盖度的Au/GaN(0001)界面的同步辐射研究.  , 2005, 54(8): 3793-3798. doi: 10.7498/aps.54.3793
    [19] 曾思良, 逄锦桥, 李 萍, 李月明, 颜 君, 王建国. Bi80+辐射复合过程的计算.  , 2005, 54(6): 2625-2632. doi: 10.7498/aps.54.2625
    [20] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数.  , 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
计量
  • 文章访问数:  6261
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-18
  • 修回日期:  2012-10-23
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map