搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质结电荷转移的密度矩阵理论近似研究

王鹿霞 常凯楠

引用本文:
Citation:

异质结电荷转移的密度矩阵理论近似研究

王鹿霞, 常凯楠

Study on electron transfer in a heterogeneous system using a density matrix theory approach

Wang Lu-Xia, Chang Kai-Nan
PDF
导出引用
  • 分子半导体组成的异质结构是染料敏化太阳能电池的主要部分,电荷转移效率的提高是太阳能转换效率的关键. 在金属纳米粒子与染料分子和半导体TiO2 组成的系统中,考虑半导体的晶格结构、电子波函数在晶格边界的反射及金属纳米粒子中的等离激元效应,应用密度矩阵理论研究在光激发分子作用下电荷从分子转移到半导体晶格的动力学过程,采用密度矩阵和波函数相结合的处理方案研究了分子半导体电荷转移过程中的等离激元效应. 研究发现金属钠米粒子激发所产生的等离激元可以使电荷从分子到半导体的转移效率提高3个数量级,是提高电荷转移效率的有效手段,且密度矩阵理论与波函数相结合的方法使得计算分子与15 nm尺度的半导体纳米晶体间的电荷转移成为可能,理论分析了表面等离激元的增益作用对电荷转移的影响.
    Heterogeneous structure of a molecule semiconductor is the essential part of dye-sensitized solar cell, and the charge injection in it is the key factor of efficiency of solar energy conversion. A heterogeneous system is investigated where a metal nano-particle is used to decorate the structure of dye molecules and TiO2 semiconductor. Photoinduced charge injection dynamics from the molecule dye to TiO2 lattice is studied using density matrix theory. Simulations can account for the semiconductor lattice structure, the reflection of electron wave function in the lattice boundary, as well as the plasmon effect of the metal nano-particles. The compound treatment of density matrix theory and wave function approach is verified to be an efficient way for calculating the plasmon effect in the heterogeneous system. It is found that the plasmon enhancement due to the photoexcitation of metal nano-particles can reach as high as 3 orders of magnitude, which is shown to be an efficient way of improvement of charge conversion. The approach of density matrix theory and wave function treatment makes it possible to simulate the charge transfer in large-scale bulk semiconductor, the result of which is helpful for the theoretical analysis of plasmon enhancement in charge transfer dynamics.
    • 基金项目: 国家自然科学基金(批准号:11174029)和中央高校基本科研业务费资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174029) and the Fundamental Research Fund for Central University of China.
    [1]

    Yu X H, Sun Z Z, Lian J, Li Y T, Chen Y X, Gao S, Wang X, Wang Y S, Zhao M L 2013 Chin. Phys. Lett. 30 118801

    [2]

    Xu S Y, Hu L H, Li W X, Dai S Y 2011 Acta Phys. Sin. 60 116802 (in Chinese)[徐双英, 胡林华, 李文欣, 戴松元 2011 60 116802]

    [3]

    Yella A, Lee H-W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [4]

    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M 2009 J. Am. Chem. Soc. 131 5930

    [5]

    Grätzel Gratzel M 2001 Nature 414 338

    [6]

    Pastore M, Fantacci S, Angelis F De 2013 J. Phys. Chem. C 117 3685

    [7]

    Hartland G V 2012 J. Phys. Chem. Lett. 3 1421

    [8]

    Xiang C P, Jin Y, Liu J T, Xu B Z, Wang W M, Wei X, Song C F, Xu Yun 2014 Chin. Phys. B 23 038803

    [9]

    Yoon W J, Jung K Y, Liu J, Duraisamy T, Revur R, Teixeira F L, Sengupta S, Berger P R 2010 Sol. Energ. Mat. Sol. C 94 128

    [10]

    Liu D D, Zang H 2011 Chin. Phys. B 20 097105

    [11]

    Hagglund C, Zach M, Kasemo B 2008 Appl. Phys. Lett. 92 013113

    [12]

    Ishikawa K, Wen C, Yamada K, Okubo T 2004 J. Chem. Eng. Jpn. 37 645

    [13]

    Rand B, Peumans P, Forrest S 2004 J. Appl. Phys. 96 7519

    [14]

    Kulkarni A P, Noone K M, Munechika K, Guyer S R, Ginger D S 2010 Nano Lett. 10 1501

    [15]

    Prezhdo O V, Duncan W R, Prezhdo V V 2009 Prog. Surf. Sci. 84 30

    [16]

    Martsinovich N, Troisi A 2011 J. Phys. Chem. C 115 11781

    [17]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin 61 097805 (in Chinese)[邹伟博, 周骏, 金理, 张昊鹏 2012 61 097805]

    [18]

    Negre C F A, Fuertes V C, Oviedo M B, Oliva F Y, Sanchez C G 2012 J. Phys. Chem. C 116 14748

    [19]

    Oviedo M B, Zarate X, Negre C F A, Schott E, Arratia–Perez R, Sanchez C G 2012 J. Phys. Chem. Lett. 3 2548

    [20]

    Tan Z, Wang L X 2013 Acta Phys. Sin. 62 237303 (in Chinese)[谭姿, 王鹿霞 2013 62 237303]

    [21]

    Zhao H M, Wang L X 2009 Acta Phys. Sin. 58 1332 (in Chinese)[赵红敏, 王鹿霞 2009 58 1332]

    [22]

    Wang L, Ernstorfer R, Willig F, May V 2005 J. Phys Chem B 109 9589

    [23]

    Zelinskyy Y, Zhang Y, May V 2012 J. Phys. Chem. A 116 11330

    [24]

    Tsivlin D V, Willig F, May V 2008 Phys. Rev. B 77 035319

    [25]

    Schelling P K, Yu N, Halley J W 1998 Phys. Rev. B 58 1279

    [26]

    Kyas G, May V 2011 J. Chem. Phys. 134 034701

    [27]

    Sun X F, Wang L X 2014 Acta Phys. Sin 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 63 097301]

  • [1]

    Yu X H, Sun Z Z, Lian J, Li Y T, Chen Y X, Gao S, Wang X, Wang Y S, Zhao M L 2013 Chin. Phys. Lett. 30 118801

    [2]

    Xu S Y, Hu L H, Li W X, Dai S Y 2011 Acta Phys. Sin. 60 116802 (in Chinese)[徐双英, 胡林华, 李文欣, 戴松元 2011 60 116802]

    [3]

    Yella A, Lee H-W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [4]

    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M 2009 J. Am. Chem. Soc. 131 5930

    [5]

    Grätzel Gratzel M 2001 Nature 414 338

    [6]

    Pastore M, Fantacci S, Angelis F De 2013 J. Phys. Chem. C 117 3685

    [7]

    Hartland G V 2012 J. Phys. Chem. Lett. 3 1421

    [8]

    Xiang C P, Jin Y, Liu J T, Xu B Z, Wang W M, Wei X, Song C F, Xu Yun 2014 Chin. Phys. B 23 038803

    [9]

    Yoon W J, Jung K Y, Liu J, Duraisamy T, Revur R, Teixeira F L, Sengupta S, Berger P R 2010 Sol. Energ. Mat. Sol. C 94 128

    [10]

    Liu D D, Zang H 2011 Chin. Phys. B 20 097105

    [11]

    Hagglund C, Zach M, Kasemo B 2008 Appl. Phys. Lett. 92 013113

    [12]

    Ishikawa K, Wen C, Yamada K, Okubo T 2004 J. Chem. Eng. Jpn. 37 645

    [13]

    Rand B, Peumans P, Forrest S 2004 J. Appl. Phys. 96 7519

    [14]

    Kulkarni A P, Noone K M, Munechika K, Guyer S R, Ginger D S 2010 Nano Lett. 10 1501

    [15]

    Prezhdo O V, Duncan W R, Prezhdo V V 2009 Prog. Surf. Sci. 84 30

    [16]

    Martsinovich N, Troisi A 2011 J. Phys. Chem. C 115 11781

    [17]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin 61 097805 (in Chinese)[邹伟博, 周骏, 金理, 张昊鹏 2012 61 097805]

    [18]

    Negre C F A, Fuertes V C, Oviedo M B, Oliva F Y, Sanchez C G 2012 J. Phys. Chem. C 116 14748

    [19]

    Oviedo M B, Zarate X, Negre C F A, Schott E, Arratia–Perez R, Sanchez C G 2012 J. Phys. Chem. Lett. 3 2548

    [20]

    Tan Z, Wang L X 2013 Acta Phys. Sin. 62 237303 (in Chinese)[谭姿, 王鹿霞 2013 62 237303]

    [21]

    Zhao H M, Wang L X 2009 Acta Phys. Sin. 58 1332 (in Chinese)[赵红敏, 王鹿霞 2009 58 1332]

    [22]

    Wang L, Ernstorfer R, Willig F, May V 2005 J. Phys Chem B 109 9589

    [23]

    Zelinskyy Y, Zhang Y, May V 2012 J. Phys. Chem. A 116 11330

    [24]

    Tsivlin D V, Willig F, May V 2008 Phys. Rev. B 77 035319

    [25]

    Schelling P K, Yu N, Halley J W 1998 Phys. Rev. B 58 1279

    [26]

    Kyas G, May V 2011 J. Chem. Phys. 134 034701

    [27]

    Sun X F, Wang L X 2014 Acta Phys. Sin 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 63 097301]

  • [1] 贾韫哲, 孟胜. 光激发下水体系的超快动力学.  , 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控.  , 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应.  , 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [4] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控.  , 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] 赵翔宇, 秦楡禄, 季博宇, 郎鹏, 宋晓伟, 林景全. 飞秒传输表面等离激元的近场成像表征与激发效率的调控.  , 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827
    [6] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明.  , 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [7] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [8] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学.  , 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [9] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [10] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [11] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究.  , 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [12] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发.  , 2016, 65(8): 087301. doi: 10.7498/aps.65.087301
    [13] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应.  , 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [14] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离.  , 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [15] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究.  , 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [16] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发.  , 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [17] 孙雪菲, 王鹿霞. 分子激发中的表面等离激元增强效应.  , 2014, 63(9): 097301. doi: 10.7498/aps.63.097301
    [18] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应.  , 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [19] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响.  , 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] 任燕如, 尹道乐. 金属中声学等离激元的产生条件.  , 1981, 30(4): 545-548. doi: 10.7498/aps.30.545
计量
  • 文章访问数:  6315
  • PDF下载量:  401
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-03
  • 修回日期:  2014-03-21
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map