搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稳态电热拉曼技术的碳纳米管纤维导热系数测量及传热研究

李满 戴志高 应见见 肖湘衡 岳亚楠

引用本文:
Citation:

基于稳态电热拉曼技术的碳纳米管纤维导热系数测量及传热研究

李满, 戴志高, 应见见, 肖湘衡, 岳亚楠

Thermal characterization of carbon nanotube fibers based on steady-state electro-Raman-thermal technique

Li Man, Dai Zhi-Gao, Ying Jian-Jian, Xiao Xiang-Heng, Yue Ya-Nan
PDF
导出引用
  • 利用稳态电热拉曼技术测量了碳纳米管纤维对流换热环境下的导热系数. 该方法基于材料拉曼信号与温度之间的关系, 实时探测一维材料在不同电加热(内热源)下的中心点温度, 利用对流环境下的稳态导热模型推导出材料的导热系数, 实现了一维微纳材料热物性的无损化和非接触式测量. 实验发现: 碳纳米管纤维的导热系数远低于单根碳纳米管的导热系数, 但高于碳纳米管堆积床的导热系数. 这表明碳纳米管体材料的热物性主要取决于内部管束的列阵和管束间的接触热阻.
    Carbon nanotube (CNT) fiber is a promising material due to its extensive potential in micro/nanoelectronics, where the thermal performance is of great importance. In this work, a well-developed steady-state electro-Raman-thermal technique is employed and extended to the ambient environment for measuring thermal conductivity of the CNTs fiber. In this technique, two ends of the CNT fiber are attached to heat sinks and a steady electrical current flows in a sample to induce Joule heating. The heat dissipates to the ambient air and goes through the sample to the heat sinks. With combined effects of natural heat convection and heat conduction, a steady temperature profile along the sample can be established. The middle point temperature of the fiber is probed by measuring the local Raman spectrum. It is because the Raman scattering (such as G peak) of CNT fiber is temperature dependent and thus it can be used as a temperature indicator for thermal property measurement. In calibration experiment, the temperature coefficient of the G peak of CNT fiber is first obtained. A modified one-dimensional heat conduction solution involving free convection effect is derived as #br#T(x) =((I2R)/(hLS))(1 -(e√(hS)/(kAc)x)+e-√(hS)/((kAc)x)/(e√(hS)/(kAc)L/2)+e-√(hS)/(kAc)L/2))+ T0. It can be found that the relationship between middle point temperature (T0) and applied Joule heating power (I2R) can be used to extract the thermal conductivity of the material (k) as long as the convection coefficient (h) is available. In this work, the convection coefficient is calculated by the model established by Peirs et al. The thermal conductivity of CNT fiber synthesized from floating catalyst method is measured to be 66.93 W/(m·K)± 11.49 W/(m·K). This value is a little bit larger than that of other CNT fibers synthesized by the acid spun method or the dry-spinning method, which can be explained by the different sample structures induced from different synthesize method. This value is two orders of magnitude smaller than that of individual carbon nanotube, and two orders of magnitude larger than that of CNTs packed bed, showing that heat conduction in CNT based bulk material is determined mainly by a large number of thermal interfaces between CNTs contacts rather than the intrinsic thermal property of CNT.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51206124)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51206124).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Baughman R H, Zakhidov A A, de Heer W A 2002 Science 297 787

    [3]

    Meng F C, Zhou Z P, Li Q W 2010 Mater. Rev. 24 38 (in Chinese) [孟凡成, 周振平, 李清文 2010 材料导报 24 38]

    [4]

    Ericson L M, Fan H, Peng H, Davis V A, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C 2004 Science 305 1447

    [5]

    Dalton A B, Collins S, Munoz E, Razal J M, Ebron V H, Ferraris J P, Coleman J N, Kim B G, Baughman R H 2003 Nature 423 703

    [6]

    Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A 2007 Science 318 1892

    [7]

    Pop E, Mann D, Wang Q, Goodson K, Dai H 2006 Nano Lett. 6 96

    [8]

    Feng D L, Feng Y H, Chen Y, Li W, Zhang X X 2013 Chin. Phys. B 22 016501

    [9]

    Feng Y, Zhu J, Tang D W 2014 Chin. Phys. B 23 083101

    [10]

    Aliev A E, Guthy C, Zhang M, Fang S, Zakhidov A A, Fischer J E, Baughman R H 2007 Carbon 45 2880

    [11]

    Wang Z L, Tang D W, Zheng X H, Bu W F, Zhang W G 2007 J. Eng. Thermophys. 28 490 (in Chinese) [王照亮, 唐大伟, 郑兴华, 布文峰, 张伟刚 2007 工程热 28 490]

    [12]

    Choi T Y, Poulikakos D, Tharian J, Sennhauser U 2005 Appl. Phys. Lett. 87 013108

    [13]

    Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881

    [14]

    Li Q, Liu C, Wang X, Fan S 2009 Nanotechnology 20 145702

    [15]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [16]

    Doerk G S, Carraro C, Maboudian R 2010 ACS Nano 4 4908

    [17]

    Yue Y, Eres G, Wang X, Guo L 2009 Appl. Phys. A 97 19

    [18]

    Yue Y, Zhang J, Wang X 2011 Small 7 3324

    [19]

    Raravikar N R, Keblinski P, Rao A M, Dresselhaus M S, Schadler L S, Ajayan P M 2002 Phys. Rev. B 66 235424

    [20]

    Calizo I, Balandin A, Bao W, Miao F, Lau C 2007 Nano Lett. 7 2645

    [21]

    Bassil A, Puech P, Tubery L, Bacsa W, Flahaut E 2006 Appl. Phys. Lett. 88 173113

    [22]

    Peirs J, Reynaerts D, van Brussel H 1998 Proceeding of the 1998 IEEE International Conference on Robotics and Automation Leuven, Belgium, May 20-20, 1998 p1516

    [23]

    Churchill S W, Chu H H S 1975 Int. J. Heat Mass Transfer 18 1049

    [24]

    Guan N, Liu Z, Zhang C, Jiang G 2014 Heat Mass Transfer 50 275

    [25]

    Wang Z L, Liang J G, Tang D W 2012 J. Eng. Thermophys. 33 670 (in Chinese) [王照亮, 梁金国, 唐大伟 2012 工程热 33 670]

    [26]

    Prasher R S, Hu X J, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P 2009 Phys. Rev. Lett. 102 105901

    [27]

    Yang J, Shen M, Yang Y, Evans W J, Wei Z, Chen W, Zinn A A, Chen Y, Prasher R, Xu T T, Keblinski P, Li D 2014 Phys. Rev. Lett. 112 205901

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Baughman R H, Zakhidov A A, de Heer W A 2002 Science 297 787

    [3]

    Meng F C, Zhou Z P, Li Q W 2010 Mater. Rev. 24 38 (in Chinese) [孟凡成, 周振平, 李清文 2010 材料导报 24 38]

    [4]

    Ericson L M, Fan H, Peng H, Davis V A, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C 2004 Science 305 1447

    [5]

    Dalton A B, Collins S, Munoz E, Razal J M, Ebron V H, Ferraris J P, Coleman J N, Kim B G, Baughman R H 2003 Nature 423 703

    [6]

    Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A 2007 Science 318 1892

    [7]

    Pop E, Mann D, Wang Q, Goodson K, Dai H 2006 Nano Lett. 6 96

    [8]

    Feng D L, Feng Y H, Chen Y, Li W, Zhang X X 2013 Chin. Phys. B 22 016501

    [9]

    Feng Y, Zhu J, Tang D W 2014 Chin. Phys. B 23 083101

    [10]

    Aliev A E, Guthy C, Zhang M, Fang S, Zakhidov A A, Fischer J E, Baughman R H 2007 Carbon 45 2880

    [11]

    Wang Z L, Tang D W, Zheng X H, Bu W F, Zhang W G 2007 J. Eng. Thermophys. 28 490 (in Chinese) [王照亮, 唐大伟, 郑兴华, 布文峰, 张伟刚 2007 工程热 28 490]

    [12]

    Choi T Y, Poulikakos D, Tharian J, Sennhauser U 2005 Appl. Phys. Lett. 87 013108

    [13]

    Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881

    [14]

    Li Q, Liu C, Wang X, Fan S 2009 Nanotechnology 20 145702

    [15]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [16]

    Doerk G S, Carraro C, Maboudian R 2010 ACS Nano 4 4908

    [17]

    Yue Y, Eres G, Wang X, Guo L 2009 Appl. Phys. A 97 19

    [18]

    Yue Y, Zhang J, Wang X 2011 Small 7 3324

    [19]

    Raravikar N R, Keblinski P, Rao A M, Dresselhaus M S, Schadler L S, Ajayan P M 2002 Phys. Rev. B 66 235424

    [20]

    Calizo I, Balandin A, Bao W, Miao F, Lau C 2007 Nano Lett. 7 2645

    [21]

    Bassil A, Puech P, Tubery L, Bacsa W, Flahaut E 2006 Appl. Phys. Lett. 88 173113

    [22]

    Peirs J, Reynaerts D, van Brussel H 1998 Proceeding of the 1998 IEEE International Conference on Robotics and Automation Leuven, Belgium, May 20-20, 1998 p1516

    [23]

    Churchill S W, Chu H H S 1975 Int. J. Heat Mass Transfer 18 1049

    [24]

    Guan N, Liu Z, Zhang C, Jiang G 2014 Heat Mass Transfer 50 275

    [25]

    Wang Z L, Liang J G, Tang D W 2012 J. Eng. Thermophys. 33 670 (in Chinese) [王照亮, 梁金国, 唐大伟 2012 工程热 33 670]

    [26]

    Prasher R S, Hu X J, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P 2009 Phys. Rev. Lett. 102 105901

    [27]

    Yang J, Shen M, Yang Y, Evans W J, Wei Z, Chen W, Zinn A A, Chen Y, Prasher R, Xu T T, Keblinski P, Li D 2014 Phys. Rev. Lett. 112 205901

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构.  , 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 赵建宁, 魏东, 吕国正, 王子成, 刘冬欢. 一维异质结构的瞬态热整流效应.  , 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [3] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺. 混合失配模型预测金属/半导体界面热导.  , 2023, 72(3): 034401. doi: 10.7498/aps.72.20221981
    [4] 刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军. 外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究.  , 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [5] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法.  , 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [6] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究.  , 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [7] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响.  , 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [8] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响.  , 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [9] 李斌, 罗时文, 余安澜, 熊东升, 王新兵, 左都罗. 共焦腔增强的空气拉曼散射.  , 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [10] 夏舸, 杨立, 寇蔚, 杜永成. 非均匀背景中任意柱状热斗篷的研究与设计.  , 2017, 66(11): 114401. doi: 10.7498/aps.66.114401
    [11] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率.  , 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [12] 任秀云, 田兆硕, 孙兰君, 付石友. 激光波长对拉曼散射水温遥感系统测温精度及探测深度的影响.  , 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [13] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟.  , 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [14] 鞠生宏, 梁新刚. 带孔硅纳米薄膜热整流及声子散射特性研究.  , 2013, 62(2): 026101. doi: 10.7498/aps.62.026101
    [15] 张洪玉, 张韶华, 梁鹤, 刘宇宏, 雒建斌. 纳米级润滑膜分子排列取向的拉曼光谱表征技术.  , 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [16] 赵建华, 陈 勃, 王德亮. 纳米晶锐钛矿相TiO2的非简谐效应和声子局域.  , 2008, 57(5): 3077-3084. doi: 10.7498/aps.57.3077
    [17] 王照亮, 梁金国, 唐大伟, Y. T. Zhu. 单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论.  , 2008, 57(6): 3391-3396. doi: 10.7498/aps.57.3391
    [18] 王照亮, 唐大伟, 贾 涛, 毛安民. 3ω法加热/测温膜中温度波解析及其在微/纳米薄膜导热系数测量中的应用.  , 2007, 56(2): 747-754. doi: 10.7498/aps.56.747
    [19] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算.  , 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [20] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究.  , 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
计量
  • 文章访问数:  7677
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-01-29
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map