-
利用超材料吸波体对材料参数的电磁响应, 可将其应用于传感. 本文设计了一种工字形单元结构的超材料吸波体, 基于频域算法对其在太赫兹频段的传感特性进行数值模拟, 研究了待测样品折射率、厚度及电介质隔层厚度对超材料吸波体传感器的频率灵敏度、振幅灵敏度及品质因数的影响. 研究结果表明:当待测样品厚度为40 μm时, 折射率频率灵敏度可达到153.17 GHz/RIU, 折射率振幅灵敏度可达到41.37%/RIU; 待测样品折射率一定时, 厚度频率灵敏度随其厚度的增大而线性减小; 随着待测样品厚度的增加, RFOM呈增大趋势, 但增大幅度在逐渐减小; TFOM随待测样品厚度的增加而减小.Recently, metamaterials have attracted considerable attention because of their unique properties and capability of being used in many areas of science. Among these applications, metamaterial absorber is the one researchers show much interests. On the basis of its electromagnetic responses to other material parameters, the metamaterial absorber can be applied to sensing. In this paper, a metamaterial absorber with an I-shaped unit cell is proposed and its favorable sensing characteristics in terahertz frequency range are numerically simulated in terms of frequency-domain algorithm. Influences of the thickness of the sample to be tested and the thickness of dielectric spacer of the sensing of metamaterial absorber on the frequency sensitivity, amplitude sensitivity, and the figure of merit of the refractive index, are studied in detail. Research results indicate that as the refractive index of the sample, whose thickness being fixed, increases, the resonant frequency red-shifts and the reflected amplitude increases. And when the thickness of the sample with a particular refractive index increases, the resonant frequency red-shifts and the reflected amplitude increases correspondingly. The above researches indicate that the sensing of thickness or refractive index of the sample to be tested (abbreviated as specimen) can be realized in a metamaterial absorber. The frequency sensitivity of the refractive index can reach 153.17 GHz/RIU and the amplitude sensitivity of the refractive index can reach 41.37%/RIU when the thickness of the sample is fixed at 40 μm. The frequency sensitivity of the refractive index increases as the thickness of the sample tested increases, but the increasing range gradually decreases. In addition, the amplitude sensitivity of the refractive index increases linearly with the increase of thickness of the sample tested. The frequency sensitivity of thickness decreases linearly with the increase of the thickness of the sample to be tested which is of a particular refractive index. As the thickness of dielectric spacer increases, the frequency sensitivity of the refractive index increases until the thickness reaches 30 μm. Besides, when the refractive index takes a particular value, the frequency sensitivity of thickness decreases linearly as the thickness of dielectric spacer increases. Along with the gradual increase of the thickness of the sample tested, RFOM increases but the increasing range decreases. And TFOM gradually decreases as the thickness of sample tested increases. Both the RFOM and TFOM decrease with the increase of the thickness of dielectric spacer. In the end, the sensing mechanism of metamaterial absorber is discussed in detail. The reflectance spectra and the sensitivity can be adjusted with changing the refractive index and thickeness of the sample tested and the thickness of dielectric spacer, and this will provide important instructive means for terahertz sensing with metamaterial absorbers.
-
Keywords:
- metamaterial /
- absorber /
- terahertz /
- sensing
[1] Taday P F 2004 Philos. Trans. R. Soc. London, Ser. A 362 351
[2] Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146
[3] Siegel P H 2004 Microwave Symposium Digest, 2004 IEEE MTT-S International (Fort Worth:IEEE) p1575
[4] Pickwell E, Wallace V P 2006 J. Phys. D:Appl. Phys. 39 R301
[5] Siegel P H 2002 IEEE T. Microw Theory 50 910
[6] Schmuttenmaer C A 2004 Chem. Rev. 104 1759
[7] Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401
[8] Veselago V G 1968 Phys. Usp. 10 509
[9] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[10] Lal S, Link S, Halas N J 2007 Nature Photon 1 641
[11] Zhu J, Eleftheriades G V 2009 IEEE Antenn. Wirel. PR 8 295
[12] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[13] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nature Photon 3 148
[14] Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R 2007 Appl. Phys. Lett. 91 062511
[15] O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786
[16] Lahiri B, Khokhar A Z, De La Rue R M, McMeekin S G, Johnson N P 2009 Opt. Express 17 1107
[17] Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113
[18] Tao H, Strikwerda A C, Liu M, Mondia J P, Ekmekci E, Fan K, Omenetto F G 2010 Appl. Phys. Lett. 97 261909
[19] Withayachumnankul W, Lin H, Serita K, Shah C M, Sriram S, Bhaskaran M, Abbott D 2012 Opt. Express 20 3345
[20] Cheng Y Z, Xiao T, Yang H L, Xiao B X 2010 Acta Phys. Sin. 59 5715 (in Chinese) [程用志, 肖婷, 杨河林, 肖柏勋 2010 59 5715]
[21] Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 62 013701]
[22] Grant J, Ma Y, Saha S, Khalid A, Cumming D R 2011 Opt. Lett. 36 3476
[23] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Averitt R D 2010 J. Phys. D:Appl. Phys. 43 225102
[24] Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102
[25] Zou T B, Hu F R, Xiao J, Zhang L H, Liu F, Chen T, Niu J H, Xiong X M 2014 Acta Phys. Sin. 63 178103 (in Chinese) [邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名 2014 63 178103]
[26] Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102
[27] Xu Z, Gu C, Pei Z B, Liu J, Qu S B, Gu W 2011 Chin. Phys. B 20 017801
[28] Cheng Y Z, Nie Y, Gong R Z 2013 OPT LASER TECHNOL 48 415
[29] Cong L, Singh R 2014 arXiv:1408.3711v1 [physics. optics]
[30] Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W 2014 Appl. Phys. Lett. 105 171101
-
[1] Taday P F 2004 Philos. Trans. R. Soc. London, Ser. A 362 351
[2] Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146
[3] Siegel P H 2004 Microwave Symposium Digest, 2004 IEEE MTT-S International (Fort Worth:IEEE) p1575
[4] Pickwell E, Wallace V P 2006 J. Phys. D:Appl. Phys. 39 R301
[5] Siegel P H 2002 IEEE T. Microw Theory 50 910
[6] Schmuttenmaer C A 2004 Chem. Rev. 104 1759
[7] Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401
[8] Veselago V G 1968 Phys. Usp. 10 509
[9] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[10] Lal S, Link S, Halas N J 2007 Nature Photon 1 641
[11] Zhu J, Eleftheriades G V 2009 IEEE Antenn. Wirel. PR 8 295
[12] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[13] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nature Photon 3 148
[14] Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R 2007 Appl. Phys. Lett. 91 062511
[15] O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786
[16] Lahiri B, Khokhar A Z, De La Rue R M, McMeekin S G, Johnson N P 2009 Opt. Express 17 1107
[17] Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113
[18] Tao H, Strikwerda A C, Liu M, Mondia J P, Ekmekci E, Fan K, Omenetto F G 2010 Appl. Phys. Lett. 97 261909
[19] Withayachumnankul W, Lin H, Serita K, Shah C M, Sriram S, Bhaskaran M, Abbott D 2012 Opt. Express 20 3345
[20] Cheng Y Z, Xiao T, Yang H L, Xiao B X 2010 Acta Phys. Sin. 59 5715 (in Chinese) [程用志, 肖婷, 杨河林, 肖柏勋 2010 59 5715]
[21] Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 62 013701]
[22] Grant J, Ma Y, Saha S, Khalid A, Cumming D R 2011 Opt. Lett. 36 3476
[23] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Averitt R D 2010 J. Phys. D:Appl. Phys. 43 225102
[24] Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102
[25] Zou T B, Hu F R, Xiao J, Zhang L H, Liu F, Chen T, Niu J H, Xiong X M 2014 Acta Phys. Sin. 63 178103 (in Chinese) [邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名 2014 63 178103]
[26] Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102
[27] Xu Z, Gu C, Pei Z B, Liu J, Qu S B, Gu W 2011 Chin. Phys. B 20 017801
[28] Cheng Y Z, Nie Y, Gong R Z 2013 OPT LASER TECHNOL 48 415
[29] Cong L, Singh R 2014 arXiv:1408.3711v1 [physics. optics]
[30] Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W 2014 Appl. Phys. Lett. 105 171101
计量
- 文章访问数: 6558
- PDF下载量: 451
- 被引次数: 0