搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较

陈鑫 颜晓红 肖杨

引用本文:
Citation:

Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较

陈鑫, 颜晓红, 肖杨

Charge distribution of Li-doped few-layer MoS2 and comparison to graphene and BN

Chen Xin, Yan Xiao-Hong, Xiao Yang
PDF
导出引用
  • 基于第一性原理计算, 研究了Li掺杂的少层(1-3层) MoS2的电荷分布, 并与石墨片和BN片的电荷分布特征进行了比较. 与石墨片和BN片相同的是: 电荷转移的大部分只发生在Li与最靠近Li的第一层MoS2之间. 然而, 第二层和第三层MoS2也能获得10%的转移电荷, 而石墨片和BN片的第二层和第三层得不到2%的电荷. 结合静电能和功函数的分析可知, MoS2、石墨片和BN片的电荷分布主要由层间的静电相互作用和功函数来决定. 这些研究结果对于揭示具有多层结构的电荷分布特征及其电子器件的设计提供了理论支持.
    According to first-principles calculation, we study the charge distribution of Li-doped few-layer (1-3 layers) MoS2 and compare it with the results of graphene and BN. It is found that the stable adsorption sites of Li are the top (Mo) site for MoS2 layer, and the hexagonal center for graphene and BN layers. Band structures of pristine MoS2 show that single-layer MoS2 is a direct band gap semiconductor while few-layer MoS2 is an indirect one. As MoS2 is doped, the Fermi level will shift to the conduction band, indicating a charge transfer between Li and MoS2. The charge transfer takes place mostly between Li and the topmost MoS2 layer, which is very similar to that happening between graphene and BN. However, the second and third layer of MoS2, which are far from Li, can acquire about 10% of transferred charges. In contrast, the second and third layer obtain no more than 2% of charges for graphene and BN. Based on the electrostatic theory, we derive for both double and triple layers the formulas of electrostatic energy, which show clearly that only charge transfer between Li and the topmost layer will give the lowest electrostatic energy. Moreover, we calculate the work functions of pristine MoS2, graphene and BN, and find that, despite similar work functions of MoS2 and BN, the larger band gap of BN will make charge transfer between Li and BN harder. The analyses of electrostatic energy and work function show that the charge distribution is dominated by both interlayer electrostatic interaction and work function of material. It is expected that the above results could be helpful for doping layered structures and designing devices.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: NS2014073)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. NS2014073).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666

    [2]

    Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101

    [3]

    Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101

    [4]

    Li K, Yang W, Wei J L, Du S W, Li Y T 2014 Chin. Phys. B 23 047103

    [5]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [6]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335

    [7]

    Xiao D, Liu G, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802

    [8]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887

    [9]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nano 7 490

    [10]

    Zeng H, Liu G, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608

    [11]

    Pan H, Zhang Y W 2012 J. Mater. Chem. 22 7280

    [12]

    Liu Q J, Zhang N C, Liu F S, Liu Z T 2014 Chin. Phys. B 23 047101

    [13]

    Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J N, Wang X R 2013 Nat. Commun. 4 2642

    [14]

    Kim S, Konar A, Hwang W S 2012 Nat. Commun. 3 1011

    [15]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nano 6 147

    [16]

    Lembke D, Kis A 2012 ACS Nano 6 10070

    [17]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [18]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [19]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [20]

    Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J, Javey A 2013 Nano Lett. 13 1991

    [21]

    Dolui K, Rungger I, Pemmaraju C D, Sanvito S 2013 Phys. Rev. B 88 075420

    [22]

    Lu D, Xiao Y, Yan X H, Yang Y R 2011 Chem. Phys. Lett. 4 263

    [23]

    Kresse G, Furthmuller 1996 Phys. Rev. B 54 11169

    [24]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354

    [25]

    Chang J, Larentis S, Tutuc E, Register L, Banerjee S 2014 Appl. Phys. Lett. 104 141603

    [26]

    Li Z L, Cheng X L 2014 Chin. Phys. B 23 046201

    [27]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]

    [28]

    Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 62 037103]

    [29]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2013 Acta Phys. Sin. 62 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2013 62 117101]

    [30]

    Giovannetti G, Khomyakov P, Brocks G, Karpan V, Brink J, Kelly P 2008 Phys. Rev. Lett. 101 026803

    [31]

    Bokdam M, Brocks G, Katsnelson M, Kelly P 2014 Phys. Rev. B 90 085415

    [32]

    Zhao S, Li Z, Yang J 2014 J. Am. Chem. Soc. 136 13313

    [33]

    Zhao J J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706

    [34]

    Rubio A, Miyamoto Y, Blase X, Cohen M L, Louie S G 1996 Phys. Rev. B 53 4023

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666

    [2]

    Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101

    [3]

    Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101

    [4]

    Li K, Yang W, Wei J L, Du S W, Li Y T 2014 Chin. Phys. B 23 047103

    [5]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [6]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335

    [7]

    Xiao D, Liu G, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802

    [8]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887

    [9]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nano 7 490

    [10]

    Zeng H, Liu G, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608

    [11]

    Pan H, Zhang Y W 2012 J. Mater. Chem. 22 7280

    [12]

    Liu Q J, Zhang N C, Liu F S, Liu Z T 2014 Chin. Phys. B 23 047101

    [13]

    Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J N, Wang X R 2013 Nat. Commun. 4 2642

    [14]

    Kim S, Konar A, Hwang W S 2012 Nat. Commun. 3 1011

    [15]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nano 6 147

    [16]

    Lembke D, Kis A 2012 ACS Nano 6 10070

    [17]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [18]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [19]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [20]

    Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J, Javey A 2013 Nano Lett. 13 1991

    [21]

    Dolui K, Rungger I, Pemmaraju C D, Sanvito S 2013 Phys. Rev. B 88 075420

    [22]

    Lu D, Xiao Y, Yan X H, Yang Y R 2011 Chem. Phys. Lett. 4 263

    [23]

    Kresse G, Furthmuller 1996 Phys. Rev. B 54 11169

    [24]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354

    [25]

    Chang J, Larentis S, Tutuc E, Register L, Banerjee S 2014 Appl. Phys. Lett. 104 141603

    [26]

    Li Z L, Cheng X L 2014 Chin. Phys. B 23 046201

    [27]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]

    [28]

    Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 62 037103]

    [29]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2013 Acta Phys. Sin. 62 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2013 62 117101]

    [30]

    Giovannetti G, Khomyakov P, Brocks G, Karpan V, Brink J, Kelly P 2008 Phys. Rev. Lett. 101 026803

    [31]

    Bokdam M, Brocks G, Katsnelson M, Kelly P 2014 Phys. Rev. B 90 085415

    [32]

    Zhao S, Li Z, Yang J 2014 J. Am. Chem. Soc. 136 13313

    [33]

    Zhao J J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706

    [34]

    Rubio A, Miyamoto Y, Blase X, Cohen M L, Louie S G 1996 Phys. Rev. B 53 4023

  • [1] 刘志贵, 宋智颖, 全荣辉. 功函数对月球表面附近尘埃充电和动力学的影响.  , 2024, 73(23): 1-10. doi: 10.7498/aps.73.20241281
    [2] 王麒铭, 张益军, 王兴超, 王亮, 金睦淳, 任玲, 刘晓荣, 钱芸生. Cs/O沉积Na2KSb光电阴极表面的第一性原理研究.  , 2024, 73(8): 088501. doi: 10.7498/aps.73.20231561
    [3] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究.  , 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [4] 刘洪亮, 郭志迎, 袁晓峰, 高倩倩, 段欣雨, 张忻, 张久兴. 典型二元单晶REB6的电子结构和发射性能.  , 2022, 71(9): 098101. doi: 10.7498/aps.71.20211870
    [5] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化.  , 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [6] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展.  , 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [7] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算.  , 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [8] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究.  , 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [9] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究.  , 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [10] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖. GaN(0001)表面电子结构和光学性质的第一性原理研究.  , 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [11] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究.  , 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [12] 周华杰, 徐秋霞. Ni全硅化金属栅功函数调节技术研究.  , 2011, 60(10): 108102. doi: 10.7498/aps.60.108102
    [13] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数.  , 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [14] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究.  , 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [15] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究.  , 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [16] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究.  , 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [17] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响.  , 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [18] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性.  , 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [19] 曹柱荣, 蔡晓红, 于得洋, 杨 威, 卢荣春, 邵曹杰, 陈熙萌. 高电荷态Xe离子与He原子碰撞中的电子转移过程研究.  , 2004, 53(9): 2943-2946. doi: 10.7498/aps.53.2943
    [20] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理.  , 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
计量
  • 文章访问数:  6430
  • PDF下载量:  516
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2014-11-23
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map