搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni2O3掺杂对新固相源顶部籽晶熔渗生长法制备单畴GdBCO超导块材超导性能的影响

郭莉萍 杨万民 郭玉霞 陈丽平 李强

引用本文:
Citation:

Ni2O3掺杂对新固相源顶部籽晶熔渗生长法制备单畴GdBCO超导块材超导性能的影响

郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强

Effect of Ni2O3 doping on the properties of single domain GdBCO bulk superconductors fabricated by a new modified top-seeding infiltration and growth process

Guo Li-Ping, Yang Wan-Min, Guo Yu-Xia, Chen Li-Ping, Li Qiang
PDF
导出引用
  • 本文通过在新固相源中添加Ni2O3的方法, 采用顶部籽晶熔渗生长工艺(TSIG)制备出组分为(1-x) (Gd2O3+1.2BaCuO2)+x Ni2O3、直径为20 mm的单畴GdBCO 超导块材(其中x = 0, 0.02, 0.06, 0.10, 0.14, 0.18, 0.30, 0.50 wt%), 并研究了Ni2O3的掺杂量x对样品的表面生长形貌、微观结构、临界温度Tc、磁悬浮力以及俘获磁通密度的影响. 研究结果表明, 当Ni2O3的掺杂量x在0–0.50 wt%的范围内时, 均可制备出单畴性良好的样品, 且Ni2O3的掺杂对样品中Gd211粒子的分布和粒径没有明显的影响. 在Ni2O3的掺杂量x从0增加到0.50 wt%的过程中, 样品的临界温度Tc呈现下降的趋势, 从x=0时的92.5 K下降到x=0.50 wt%时的86.5 K, 这是由于Ni3 +替代GdBCO晶体中Cu2 +所致; 样品磁悬浮力和俘获磁通密度均呈现先增大后减小的变化规律, x=0.14 wt%时, 磁悬浮力达到最大值34.2 N, x=0.10 wt%时, 俘获磁通密度达到最大值0.354 T. 样品磁悬浮力和俘获磁通密度的变化规律与Ni2O3的掺杂量x有密切关系, 只有当掺杂量x合适时, Ni3+对Cu2 +的替代既不会造成Tc的明显下降, 但又能产生适量的Ni3 +/Cu2+ 晶格畸变, 从而达到提高样品磁通钉扎能力和超导性能的效果.
    Single-domain GdBCO bulk superconductor (20 mm in diameter) has been fabricated by a top-seeding infiltration and growth (TSIG) mathod, it has a new solid phase of [(1-x)(Gd2O3+1.2BaCuO2) + x Ni2O3] (where x =0, 0.02, 0.06, 0.10, 0.14, 0.18, 0.30, 0.50 wt%). Effect of Ni2O3 additions on the growth morphology, microstructure, critical temperature Tc, magnetic levitation force, and trapped flux of single-domain GdBCO bulks have been investigated. Results show that the single-domain GdBCO bulk can be gained when x is in the range of 0-0.50 wt%; and the Gd211 particles are not affected by the Ni2O3 doping in the samples. The Tc of the samples decrease from 92.5 K (x=0 wt%) to 86.5 K (x=0.50 wt%) when x increases from 0 to 0.50 wt%, which is caused by the substitution of Ni3+ for Cu2 +. Both of the levitation force and trapped field of the samples increase first and then decrease with the increase of x; the largest levitation force of 34.2 N is obtained for the samples with x=0.14 wt%, and the largest trapped field of 0.354 T is obtained for the samples with x=0.10 wt%. The change of the levitation force and trapped field of the samples is closely related to the doping content x. As is known, the doping of Ni2O3 can result in substitution of Ni3+ for Cu2+ at its site in GdBCO crystals, which can reduce the critical temperature Tc of the samples; although Tc and the physical properties of the samples is reduced with the increase in the doping amount of Ni2O3, but at the same time, the substitutions of Ni3 + for Cu2 + in GdBCO crystals can produce local lattice distortions, which can act as magnetic flux pinning centers to improve the properties of the samples. The highest Tc is obtained in the samples without any Ni2O3 additions (x=0), but the magnetic flux pinning force of the samples is weak, so both of the levitation force and trapped field of the samples are relatively lower. When the doping content x ≤ 0.14 wt%, although the Tc is reduced slightly, it still has a value higher than 90 K; and the magnetic flux pinning force in the samples, due to the substitutions of Ni3+ for Cu2 +, would increase with the increase of doping content x, and result in an enhancement of levitation force and trapped field. When the doping content x is greater than 0.14 wt%, the magnetic flux pinning force of the samples is still increasing with the increase of x, but the Tc of the sample is significantly reduced and even less than 90 K, and finally result in an decrease of levitation force and trapped field. Only when the doping amount of Ni2O3 is appropriate, both of Tc and magnetic flux pinning force are of a relative optimal value, and lead to an enhancement of levitation force and trapped field.
    • 基金项目: 国家自然科学基金(批准号: 51342001, 50872079, 51167016)、教育部科学技术研究重大项目(批准号: 311033)、高等学校博士学科点专项科研基金(批准号: 20120202110003)、陕西省重点科技创新团队项目(批准号: 2014KTC-18)和中央高校基本科研业务费专项资金(批准号: GK201101001, GK201305014)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001, 50872079, 51167016), the Foundation for Key Program of Ministry of Education, China (Grant No. 311033), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Key Program of Science and Technology innovation team of Shaanxi Province (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities of Ministry of Education, China (Grant Nos. GK201101001, GK201305014).
    [1]

    Hari Babu N, Iida K, Cardwell D A 2006 Physica C 445-448 353

    [2]

    Yang W M, Zhou L, Feng Y, Zhang P X, Chao X X, Bian X B, Zhu S H, Wu X L, Liu P 2006 Supercond. Sci. Technol. 19 S537

    [3]

    Li G Z, Yang W M 2011 Acta Phys. Sin. 60 047401 (in Chinese) [李国政, 杨万民 2011 60 047401]

    [4]

    Yang W M, Zhi X, Chen S L, Wang M, Li J W, Ma J, Chao X X 2014 Physica C 496 1

    [5]

    Kim Y, No K, Han Y H, Kim C J, Jun B H, Lee S Y, Youn J S, Sung T H 2011 Cryogenics 51 247

    [6]

    Hari Babu N, Iida K, Cardwell D A 2007 Supercond. Sci. Technol. 20 S141

    [7]

    Sha J J, Yao Z W, Yu J N, Yu G, Luo J H, Wen H H, Yang W L, Li S L 2000 Acta Phys. Sin. 49 1356 (in Chinese) [沙建军, 姚仲文, 郁金南, 郁刚, 罗金汉, 闻海虎, 杨万里, 李世亮 2000 49 1356]

    [8]

    Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 61 196102]

    [9]

    Wang M, Yang W M, M J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin.-Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰 2012 中国科学: 物理学力学天文学 42 346]

    [10]

    Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D, Wang X X 2008 Chin. Phys. B 17 3484

    [11]

    Zhou Y X, Lo W, Tang T B, Salama K 2002 Supercond. Sci. Technol. 15 722

    [12]

    Shlyk L, Krabbes G, Fuchs G 2003 Physica C 390 325

    [13]

    Nariki S, Seo S J, Sakai N, Murakami M 2000 Supercond. Sci. Technol. 13 778

    [14]

    Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P 2005 Chinese Journal of Low Temperature Physics 27 944 (in Chinese) [杨万民, 钞曦旭, 舒志兵, 朱思华, 武晓亮, 边小兵, 刘鹏 2005 低温 27 944]

    [15]

    Yang W M, Feng Y, Zhou L, Zhang P X, Wu M Z, Chen S K, Wu X Z, Gawalek W 1999 Physica C 319 164

    [16]

    Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P 2006 Physica C 445-448 347

    [17]

    Hu A, Sakai N, Ogasawara K, Murakami M 2002 Physica C 366 157

    [18]

    Zhou D F, Xu K, Hara S, Li B Z, Izumi M 2013 Trans. Nonferrous Met. Soc. China 23 2042

    [19]

    Zhou Y X, Scruggs S, Salama K 2006 Supercond. Sci. Technol. 19 S556

    [20]

    Li P L, Cao G X, Deng D M, Cao S X, Zhang J C 2003 Chinese Journal of Low Temperature Physics 25 81 (in Chinese) [李平林, 曹桂新, 邓冬梅, 曹世勋, 张金仓 2003 低温 25 81]

  • [1]

    Hari Babu N, Iida K, Cardwell D A 2006 Physica C 445-448 353

    [2]

    Yang W M, Zhou L, Feng Y, Zhang P X, Chao X X, Bian X B, Zhu S H, Wu X L, Liu P 2006 Supercond. Sci. Technol. 19 S537

    [3]

    Li G Z, Yang W M 2011 Acta Phys. Sin. 60 047401 (in Chinese) [李国政, 杨万民 2011 60 047401]

    [4]

    Yang W M, Zhi X, Chen S L, Wang M, Li J W, Ma J, Chao X X 2014 Physica C 496 1

    [5]

    Kim Y, No K, Han Y H, Kim C J, Jun B H, Lee S Y, Youn J S, Sung T H 2011 Cryogenics 51 247

    [6]

    Hari Babu N, Iida K, Cardwell D A 2007 Supercond. Sci. Technol. 20 S141

    [7]

    Sha J J, Yao Z W, Yu J N, Yu G, Luo J H, Wen H H, Yang W L, Li S L 2000 Acta Phys. Sin. 49 1356 (in Chinese) [沙建军, 姚仲文, 郁金南, 郁刚, 罗金汉, 闻海虎, 杨万里, 李世亮 2000 49 1356]

    [8]

    Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 61 196102]

    [9]

    Wang M, Yang W M, M J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin.-Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰 2012 中国科学: 物理学力学天文学 42 346]

    [10]

    Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D, Wang X X 2008 Chin. Phys. B 17 3484

    [11]

    Zhou Y X, Lo W, Tang T B, Salama K 2002 Supercond. Sci. Technol. 15 722

    [12]

    Shlyk L, Krabbes G, Fuchs G 2003 Physica C 390 325

    [13]

    Nariki S, Seo S J, Sakai N, Murakami M 2000 Supercond. Sci. Technol. 13 778

    [14]

    Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P 2005 Chinese Journal of Low Temperature Physics 27 944 (in Chinese) [杨万民, 钞曦旭, 舒志兵, 朱思华, 武晓亮, 边小兵, 刘鹏 2005 低温 27 944]

    [15]

    Yang W M, Feng Y, Zhou L, Zhang P X, Wu M Z, Chen S K, Wu X Z, Gawalek W 1999 Physica C 319 164

    [16]

    Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P 2006 Physica C 445-448 347

    [17]

    Hu A, Sakai N, Ogasawara K, Murakami M 2002 Physica C 366 157

    [18]

    Zhou D F, Xu K, Hara S, Li B Z, Izumi M 2013 Trans. Nonferrous Met. Soc. China 23 2042

    [19]

    Zhou Y X, Scruggs S, Salama K 2006 Supercond. Sci. Technol. 19 S556

    [20]

    Li P L, Cao G X, Deng D M, Cao S X, Zhang J C 2003 Chinese Journal of Low Temperature Physics 25 81 (in Chinese) [李平林, 曹桂新, 邓冬梅, 曹世勋, 张金仓 2003 低温 25 81]

  • [1] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响.  , 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] 李国政, 王妙. 纳米CeO2掺杂的YBCO超导块材的制备及其性能.  , 2024, 73(19): 197402. doi: 10.7498/aps.73.20240832
    [3] 王妙, 杨万民, 王小梅, 昝雅婷, 陈森林, 张明, 胡成西. 二次单畴化制备GdBCO超导块材的方法及其性能.  , 2021, 70(15): 158101. doi: 10.7498/aps.70.20202141
    [4] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究.  , 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [5] 李国政, 陈超. NiFe2O4纳米粒子掺杂对单畴YBCO超导块材性能的影响.  , 2020, 69(23): 237402. doi: 10.7498/aps.69.20201116
    [6] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响.  , 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [7] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二).  , 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [8] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响.  , 2016, 65(22): 227401. doi: 10.7498/aps.65.227401
    [9] 张晓娟, 张玉凤, 彭里其, 周文礼, 徐燕, 周迪帆, 和泉充. 纳米微粒BaFe12O19掺杂对单畴超导块材GdBa2Cu3O7-δ性能的影响.  , 2015, 64(24): 247401. doi: 10.7498/aps.64.247401
    [10] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响.  , 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [11] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响.  , 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [12] 王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰. 不同粒径纳米Y2Ba4CuBiOy 相掺杂对TSIG法单畴YBCO超导块材性能的影响.  , 2012, 61(19): 196102. doi: 10.7498/aps.61.196102
    [13] 康婷霞, 毕翱翔, 朱俊. MoO3在多孔γ-Al2 O3中固熔分散的研究.  , 2011, 60(6): 067805. doi: 10.7498/aps.60.067805
    [14] 李国政, 杨万民. 单畴GdBCO超导块材制备方法的改进及超导特性研究.  , 2011, 60(4): 047401. doi: 10.7498/aps.60.047401
    [15] 李国政, 杨万民. 用一种新的装配方式制备单畴GdBCO超导块材.  , 2011, 60(3): 037401. doi: 10.7498/aps.60.037401
    [16] 李国政, 杨万民. 用顶部籽晶熔渗生长工艺由新成分液相源制备单畴GdBCO超导块材.  , 2010, 59(7): 5028-5034. doi: 10.7498/aps.59.5028
    [17] 赵彦立, 焦正宽, 曹光旱. CaCu3Ti4O12块材和薄膜的巨介电常数.  , 2003, 52(6): 1500-1504. doi: 10.7498/aps.52.1500
    [18] 熊玉峰, 金 铎, 姚玉书, 吴 非, 贾顺莲, 赵忠贤. 新块材超导体Pr1-xCaxBa2Cu3O7-δ(0.4≤x≤0.6)的高压合成与超导电性.  , 1998, 47(10): 1713-1719. doi: 10.7498/aps.47.1713
    [19] 张鸿飞, 汪良主, 张立德, 吴希俊. 金红石相纳米块材TiO2的介电特性.  , 1996, 45(6): 1046-1050. doi: 10.7498/aps.45.1046
    [20] 储少岩, 王绪威, 程先安, 李存建, 王俊奎, 吴乾章, 黄家山. 固相反应时Bi1.92Pb0.32Sr2Ca1.7Mg0.3Cu3.07Ox超导体中2223相的生长.  , 1992, 41(12): 2024-2033. doi: 10.7498/aps.41.2024
计量
  • 文章访问数:  6247
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-30
  • 修回日期:  2014-12-24
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map