搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用顶部籽晶熔渗生长工艺由新成分液相源制备单畴GdBCO超导块材

李国政 杨万民

引用本文:
Citation:

用顶部籽晶熔渗生长工艺由新成分液相源制备单畴GdBCO超导块材

李国政, 杨万民

Fabrication of single-domain GdBCO bulk superconductors using new liquid sources by the top seeded infiltration and growth technique

Li Guo-Zheng, Yang Wan-Min
PDF
导出引用
  • 用R2O3(R分别为Gd,Y和Yb),BaCuO2和CuO配制了三种新成分液相源.利用顶部籽晶熔渗生长工艺,分别用这三种新成分液相源制备了单畴Gd-Ba-Cu-O超导块材,并对所得样品的生长特性和微观结构进行了研究.结果表明,使用新液相源可以缩短实验周期,提高制备效率,并能获得织构度良好的单畴块材.此外,由Y2O3或Yb2O3
    Three new kinds of liquid source were prepared by mixing R2O3 (here R is Gd,Y or Yb respectively),BaCuO2 and CuO powders. Single-domain Gd-Ba-Cu-O bulk superconductors have been fabricated using these liquid sources by the top seeded infiltration and growth technique. The growth characteristic and microstructure of the samples have also been investigated in detail. The results indicate that, employment of the new liquid sources not only can help us reduce the experimental period and improve the fabrication efficiency, but also can be used to fabricate well-textured single domains. Additionally, using the liquid source mixed by Y2O3 or Yb2O3 can raise the utilization rate of the liquid source powders, as well as contribute to the refinement of Gd-211 particles in the molten liquid.
    • 基金项目: 国家自然科学基金(批准号:50872079)、国家高技术研究发展计划(批准号:2007AA03Z241)和中央高校基本科研业务费专项资金(批准号:2010ZYGX021)资助的课题.
    [1]

    Sha J J, Yao Z W, Yu J N, Yu G, Luo J H, Wen H H, Yang W L, Li S L 2000 Acta Phys. Sin. 49 1356 (in Chinese) [沙建军、姚仲文、郁金南、郁 刚、罗金汉、闻海虎、杨万里、李世亮 2000 49 1356]

    [2]

    Cardwell D A 1998 Mater. Sci. Eng.B 53 1

    [3]

    Ding F Z, Lü X D, Gu H W, Li T, Cao J L 2009 Chin. Phys. B 18 1631

    [4]

    Cai Y Q, Yao X, Li G 2006 Acta Phys. Sin. 55 844 (in Chinese) [蔡衍卿、姚 忻、李 刚 2006 55 844]

    [5]

    Zhang Y L, Yao X, Zhang H, Jin Y P 2005 Acta Phys. Sin. 54 3380 (in Chinese) [张玉龙、姚 忻、张 宏、金燕苹 2005 54 3380]

    [6]

    Xu C Y, Shi L, Zuo J, Pang W H, Zhang Y H 1996 Acta Phys. Sin. 45 893 (in Chinese) [许存义、石 磊、左 健、庞文华、张裕恒 1996 45 893]

    [7]

    Hull J R, Hanany S, Matsumura T, Johnson B, Jones T 2005 Supercond. Sci. Technol. 18 S1

    [8]

    Yang W M, Zhou L, Feng Y, Zhang P X, Chao X X, Bian X B, Zhu S H, Wu X L, Liu P 2006 Supercond. Sci. Technol. 19 S537

    [9]

    Chen Y L, Chan H M, Harmer M P, Todt V R, Sengupta S, Shi D 1994 Physica C 234 232

    [10]

    Reddy E S, Rajasekharan T 1998 Supercond. Sci. Technol. 11 523

    [11]

    Meslin S, Noudem J G 2004 Supercond. Sci. Technol. 17 1324

    [12]

    Babu N H, Iida K, Shi Y, Cardwell D A 2005 Appl. Phys. Lett. 87 202506

    [13]

    Meslin S, Harnois C, Chateigner D, Ouladdiaf B, Chaud X, Noudem J G 2005 J. Eur. Ceram. Soc. 25 2943

    [14]

    Li G Z, Yang W M, Cheng X F, Fan J, Guo X D 2009 J. Mater. Sci. 44 6423

    [15]

    Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2006 J. Alloys Compd. 415 276

    [16]

    Pan P J, Xu K X, Wu X D 2009 Chinese Journal of Low Temperature Physics 31 225 (in Chinese) [泮朋军、徐克西、吴兴达 2009 低温 31 225]

    [17]

    Izumi T, Shiohara Y 1992 J. Mater. Res. 7 16

    [18]

    Izumi T, Nakamura Y, Shiohara Y 1992 J. Mater. Res. 7 1621

    [19]

    Nakamura Y, Shiohara Y 1996 J. Mater. Res. 11 2450

    [20]

    Reddy E S, Rajasekharan T 1998 Supercond. Sci. Technol. 11 523

    [21]

    Cloots R, Koutzarova T, Mathieu J P, Ausloos M 2005 Supercond. Sci. Technol. 18 R9

    [22]

    Izumi T, Nakamura Y, Shiohara Y 1993 J. Mater. Res. 8 1240

    [23]

    Chow J C L, Leung H T, Lo W, Cardwell D A 1998 J. Mater. Sci. 33 1083

    [24]

    Kim C J, Hong G W 1999 Supercond. Sci. Technol. 12 R27

    [25]

    Feng Y, Zhou L 1998 Rare Metal Mater. Eng. 27 130 (in Chinese) [冯 勇、周 廉 1998 稀有金属材料与工程 27 130]

    [26]

    Feng Y, Zhou L, Wen J G, Koshizuka N, Sulpice A, Tholence J L, Vallier J C, Monceau P 1998 Physica C 297 75

    [27]

    Feng Y, Zhou L, Yang W M, Zhang C P, Wang J R, Yu Z M, Wu X Z 2000 Acta Phys. Sin. 49 146 (in Chinese) [冯 勇、周 廉、杨万民、张翠萍、汪京荣、于泽铭、吴晓祖 2000 49 146]

  • [1]

    Sha J J, Yao Z W, Yu J N, Yu G, Luo J H, Wen H H, Yang W L, Li S L 2000 Acta Phys. Sin. 49 1356 (in Chinese) [沙建军、姚仲文、郁金南、郁 刚、罗金汉、闻海虎、杨万里、李世亮 2000 49 1356]

    [2]

    Cardwell D A 1998 Mater. Sci. Eng.B 53 1

    [3]

    Ding F Z, Lü X D, Gu H W, Li T, Cao J L 2009 Chin. Phys. B 18 1631

    [4]

    Cai Y Q, Yao X, Li G 2006 Acta Phys. Sin. 55 844 (in Chinese) [蔡衍卿、姚 忻、李 刚 2006 55 844]

    [5]

    Zhang Y L, Yao X, Zhang H, Jin Y P 2005 Acta Phys. Sin. 54 3380 (in Chinese) [张玉龙、姚 忻、张 宏、金燕苹 2005 54 3380]

    [6]

    Xu C Y, Shi L, Zuo J, Pang W H, Zhang Y H 1996 Acta Phys. Sin. 45 893 (in Chinese) [许存义、石 磊、左 健、庞文华、张裕恒 1996 45 893]

    [7]

    Hull J R, Hanany S, Matsumura T, Johnson B, Jones T 2005 Supercond. Sci. Technol. 18 S1

    [8]

    Yang W M, Zhou L, Feng Y, Zhang P X, Chao X X, Bian X B, Zhu S H, Wu X L, Liu P 2006 Supercond. Sci. Technol. 19 S537

    [9]

    Chen Y L, Chan H M, Harmer M P, Todt V R, Sengupta S, Shi D 1994 Physica C 234 232

    [10]

    Reddy E S, Rajasekharan T 1998 Supercond. Sci. Technol. 11 523

    [11]

    Meslin S, Noudem J G 2004 Supercond. Sci. Technol. 17 1324

    [12]

    Babu N H, Iida K, Shi Y, Cardwell D A 2005 Appl. Phys. Lett. 87 202506

    [13]

    Meslin S, Harnois C, Chateigner D, Ouladdiaf B, Chaud X, Noudem J G 2005 J. Eur. Ceram. Soc. 25 2943

    [14]

    Li G Z, Yang W M, Cheng X F, Fan J, Guo X D 2009 J. Mater. Sci. 44 6423

    [15]

    Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2006 J. Alloys Compd. 415 276

    [16]

    Pan P J, Xu K X, Wu X D 2009 Chinese Journal of Low Temperature Physics 31 225 (in Chinese) [泮朋军、徐克西、吴兴达 2009 低温 31 225]

    [17]

    Izumi T, Shiohara Y 1992 J. Mater. Res. 7 16

    [18]

    Izumi T, Nakamura Y, Shiohara Y 1992 J. Mater. Res. 7 1621

    [19]

    Nakamura Y, Shiohara Y 1996 J. Mater. Res. 11 2450

    [20]

    Reddy E S, Rajasekharan T 1998 Supercond. Sci. Technol. 11 523

    [21]

    Cloots R, Koutzarova T, Mathieu J P, Ausloos M 2005 Supercond. Sci. Technol. 18 R9

    [22]

    Izumi T, Nakamura Y, Shiohara Y 1993 J. Mater. Res. 8 1240

    [23]

    Chow J C L, Leung H T, Lo W, Cardwell D A 1998 J. Mater. Sci. 33 1083

    [24]

    Kim C J, Hong G W 1999 Supercond. Sci. Technol. 12 R27

    [25]

    Feng Y, Zhou L 1998 Rare Metal Mater. Eng. 27 130 (in Chinese) [冯 勇、周 廉 1998 稀有金属材料与工程 27 130]

    [26]

    Feng Y, Zhou L, Wen J G, Koshizuka N, Sulpice A, Tholence J L, Vallier J C, Monceau P 1998 Physica C 297 75

    [27]

    Feng Y, Zhou L, Yang W M, Zhang C P, Wang J R, Yu Z M, Wu X Z 2000 Acta Phys. Sin. 49 146 (in Chinese) [冯 勇、周 廉、杨万民、张翠萍、汪京荣、于泽铭、吴晓祖 2000 49 146]

  • [1] 李国政, 王妙. 纳米CeO2掺杂的YBCO超导块材的制备及其性能.  , 2024, 73(19): 197402. doi: 10.7498/aps.73.20240832
    [2] 王妙, 杨万民, 王小梅, 昝雅婷, 陈森林, 张明, 胡成西. 二次单畴化制备GdBCO超导块材的方法及其性能.  , 2021, 70(15): 158101. doi: 10.7498/aps.70.20202141
    [3] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响.  , 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [4] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二).  , 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [5] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响.  , 2016, 65(22): 227401. doi: 10.7498/aps.65.227401
    [6] 胡强, 贾晓鹏, 李尚升, 宿太超, 胡美华, 房超, 张跃文, 李刚, 刘海强, 马红安. 高压熔渗生长法制备金刚石聚晶中碳的转化机制研究.  , 2016, 65(6): 068101. doi: 10.7498/aps.65.068101
    [7] 郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强. Ni2O3掺杂对新固相源顶部籽晶熔渗生长法制备单畴GdBCO超导块材超导性能的影响.  , 2015, 64(7): 077401. doi: 10.7498/aps.64.077401
    [8] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理.  , 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [9] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响.  , 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [10] 马俊, 杨万民. 条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响.  , 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [11] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究.  , 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [12] 李国政, 杨万民. 用一种新的装配方式制备单畴GdBCO超导块材.  , 2011, 60(3): 037401. doi: 10.7498/aps.60.037401
    [13] 李国政, 杨万民. 单畴GdBCO超导块材制备方法的改进及超导特性研究.  , 2011, 60(4): 047401. doi: 10.7498/aps.60.047401
    [14] 邢辉, 陈长乐, 金克新, 谭兴毅, 范飞. 相场晶体法模拟过冷熔体中的晶体生长.  , 2010, 59(11): 8218-8225. doi: 10.7498/aps.59.8218
    [15] 赵达文, 李金富. 相场模型模拟液固界面各向异性作用下自由枝晶生长.  , 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
    [16] 牟威圩, 许小亮. 感染生长模型的逾渗模拟.  , 2006, 55(6): 2871-2876. doi: 10.7498/aps.55.2871
    [17] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长.  , 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [18] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟.  , 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [19] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟.  , 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
    [20] 刘寄浙, 金通政, 刘公强. GGG单晶的助熔生长与成核温度的确定.  , 1980, 29(1): 117-121. doi: 10.7498/aps.29.117
计量
  • 文章访问数:  7315
  • PDF下载量:  592
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-05
  • 修回日期:  2009-11-27
  • 刊出日期:  2010-07-15

/

返回文章
返回
Baidu
map