搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于十字镂空结构的低频超材料吸波体的设计与制备

周卓辉 刘晓来 黄大庆 康飞宇

引用本文:
Citation:

一种基于十字镂空结构的低频超材料吸波体的设计与制备

周卓辉, 刘晓来, 黄大庆, 康飞宇

Design and preparation of a low frequency absorber based on hollowed-out cross-shaped meta-material structure

Zhou Zhuo-Hui, Liu Xiao-Lai, Huang Da-Qing, Kang Fei-Yu
PDF
导出引用
  • 设计了一种十字镂空的超材料结构,与传统的铁磁吸波材料相结合,实现了低频吸收频带的扩宽. 仿真结果显示,吸波体在2-4 GHz范围可以实现-10 dB以下的吸收,相比于没有加载超材料的情况,吸收带宽扩展了0.5 GHz. 实验结果在2.5-5.1 GHz范围内也显示了相似的吸收曲线,低于-9 dB的吸收频带有0.48 GHz的扩宽,扩展了23%. 不同结构的能量损耗密度分布表明,相比于无镂空的十字结构,镂空十字结构可以增加磁场能量损耗,加强单元结构之间的耦合,降低超材料对传统吸波材料性能的破坏. 探索了传统铁磁吸波材料厚度的变化对吸波体吸收性能的影响,发现由超材料引入的附加峰位置不随着吸波材料厚度的改变而明显地移动. 根据这个结果,进一步设计了由两种超材料叠加组合而成的吸波体,仿真结果和实验结果均显示,在降低了1.1 mm铁磁吸波材料层厚度的情况下,使低频吸收带宽又扩展了0.9 GHz.
    A hollowed-out cross-shaped meta-material structure is designed and fabricated in this work. A kind of conventional magnetic material which works at low frequency is used as the absorber substrate. The simulation results demonstrate that an absorber can reach an absorption of less than -10 dB in a range between 2 GHz and 4 GHz, and the absorption band is expanded by a 0.5 GHz when the meta-material structure is unloaded. The experimental results indicate that a similar absorption band appears between 2.5 GHz and 5.1 GHz, which is 0.48 GHz wider than meta-material structure and the absorption band is expanded by 23% when the depth of absorption band below -9 dB. Compared with the cross meta-material, the hollowed-out structure has ability to increase the magnetic energy loss and strengthen the coupling between the units. The influence of magnetic layer thickness on absorption capability of wave absorber is analyzed. The result indicates that the position of addition absorption band does not apparently move with variation in thickness of the magnetic material layer. Based on these results, two different meta-material structures are combined to obtain a wider absorber. The simulation result and the experimental result both show another 0.9 GHz expansion of the absorption band and it can also reduce the thickness of the magnetic layer.
    • 基金项目: 国防预研基金(批准号:9140A10030110HK5105)资助的课题.
    • Funds: Project supported by the National Defense Pre-Research Foundation of China (Grant No. 9140A10030110HK5105).
    [1]

    Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M 2013 J. Appl. Phys. 113 013903

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Pendry J B, Pendry A J, Stewart W J 1996 Phys. Rev. Lett. 76 4758

    [4]

    Pendry J B, Holden A J, Robbins D J 1998 J. Phys. Condens. Matter. 10 4785

    [5]

    Shelby R, Smith D R, Schultz S 2001 Science 292 77

    [6]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6078(in Chinese)[张燕萍, 赵晓鹏, 保石, 罗春荣 2010 59 6078]

    [7]

    Sun L K, Cheng H F, Zhou Y J, Wang J, Pang Y Q 2011 Acta Phys. Sin. 60 108901(in Chinese)[孙良奎, 程海峰, 周永江, 王军, 庞永强 2011 60 108901]

    [8]

    Baena J D, Marques R, Medina F, Martel J 2004 Phys. Rev. B 69 014402

    [9]

    Wakatsuchi H, Paul J, Greedy S, Christopoulos C 2012 IEEE. Trans. Antennas Propag. 60 3670

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [12]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102

    [13]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [14]

    Lin B Q, Da X Y, Zhao S H, Meng W, Li F, Fang Y W, Wang J F 2014 Chin. Phys. B 23 067801

    [15]

    Li M H, Yang H L, Hou X W, Tian Y, Hou D Y 2010 Prog. Electromagnet. Res. 108 37

    [16]

    Luo H, Wang T, Gong R Z, Nie Y, Wang X 2011 Chin. Phys. Lett. 28 034204

    [17]

    Sun J B, Liu L Y, Dong G Y, Zhou J 2011 Opt. Express 19 21155

    [18]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

  • [1]

    Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M 2013 J. Appl. Phys. 113 013903

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Pendry J B, Pendry A J, Stewart W J 1996 Phys. Rev. Lett. 76 4758

    [4]

    Pendry J B, Holden A J, Robbins D J 1998 J. Phys. Condens. Matter. 10 4785

    [5]

    Shelby R, Smith D R, Schultz S 2001 Science 292 77

    [6]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6078(in Chinese)[张燕萍, 赵晓鹏, 保石, 罗春荣 2010 59 6078]

    [7]

    Sun L K, Cheng H F, Zhou Y J, Wang J, Pang Y Q 2011 Acta Phys. Sin. 60 108901(in Chinese)[孙良奎, 程海峰, 周永江, 王军, 庞永强 2011 60 108901]

    [8]

    Baena J D, Marques R, Medina F, Martel J 2004 Phys. Rev. B 69 014402

    [9]

    Wakatsuchi H, Paul J, Greedy S, Christopoulos C 2012 IEEE. Trans. Antennas Propag. 60 3670

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [12]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102

    [13]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [14]

    Lin B Q, Da X Y, Zhao S H, Meng W, Li F, Fang Y W, Wang J F 2014 Chin. Phys. B 23 067801

    [15]

    Li M H, Yang H L, Hou X W, Tian Y, Hou D Y 2010 Prog. Electromagnet. Res. 108 37

    [16]

    Luo H, Wang T, Gong R Z, Nie Y, Wang X 2011 Chin. Phys. Lett. 28 034204

    [17]

    Sun J B, Liu L Y, Dong G Y, Zhou J 2011 Opt. Express 19 21155

    [18]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器.  , 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [4] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为.  , 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [5] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器.  , 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [6] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展.  , 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [7] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器.  , 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [8] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究.  , 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [9] 汪肇坤, 杨振宇, 陶欢, 赵茗. 复合结构螺旋超材料对光波前的高效调控.  , 2016, 65(21): 217802. doi: 10.7498/aps.65.217802
    [10] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究.  , 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [11] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计.  , 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [12] 张新伟, 华正和, 蒋毓文, 杨绍光. 溶胶凝胶自燃烧法合成金属与合金材料研究进展.  , 2015, 64(9): 098101. doi: 10.7498/aps.64.098101
    [13] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器.  , 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [14] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体.  , 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [15] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究.  , 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [16] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器.  , 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [17] 程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜. 基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计.  , 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [18] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器.  , 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [19] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备.  , 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [20] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究.  , 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
计量
  • 文章访问数:  6785
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-08
  • 修回日期:  2014-05-10
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map