搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟

任晟 张家忠 张亚苗 卫丁

引用本文:
Citation:

零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟

任晟, 张家忠, 张亚苗, 卫丁

Phase transition in liquid due to zero-net-mass-flux jet and its numerical simulation using lattice Boltzmann method

Ren Sheng, Zhang Jia-Zhong, Zhang Ya-Miao, Wei Ding
PDF
导出引用
  • 使用格子Boltzmann方法对零质量射流激励下液体的相变演化过程进行了数值模拟和分析. 首先,提出了此特定零质量射流进出口边界的处理格式. 然后,结合Shan和Doolen提出的单组分多相模型,模拟了方腔内液体受到此零质量射流激励而诱发产生空化的过程,着重分析了三个重要射流参数ε/T,T和vout/vin对方腔内液体相变的影响. 分析表明:演化过程中方腔内气相节点数量在初始阶段急剧增长,然后经振荡趋于一个稳定值. 由于ε/T和vout/vin可以反映射流在出入方腔两个过程间相互转换时的急剧变化,所以能够影响方腔中的液体相变的演化;而改变参数T并不影响射流速度的变化程度,所以T对液体相变的影响较弱. 对于本文给定的参数取值,ε/T较小时,方腔内液体相变生成的孤立气泡脱离壁面;较大的ε/T下产生附着于方腔壁面的气泡,并且能够加速液体的相变进程;vout/vin的增加使方腔内相应的孤立气泡所覆盖的范围略有减小. 研究结果揭示了零质量射流激励诱发的液体相变过程,为进一步探索液体空化的控制途径奠定了基础.
    The phase transition in liquid due to the excitation of zero-net-mass-flux jet is simulated using the lattice Boltzmann method. First, the scheme for inlet/outlet boundary of the specific zero-net-mass-flux jet is derived. Then, with the model proposed by Shan and Doolen for single component and multiphase flow, the process of a single bubble formation in a liquid-filled square cavity is simulated, with the excitation of zero-net-mass-flux jet taken into consideration. Further, the investigation of the effects of three significant parameters, ε/T, T and vout/vin, on phase transition in the square cavity is carried out. The results show that the number of vapor nodes increases rapidly in the early stage of phase transition, and then achieves a constant after a long term fluctuation. In some sense, the previously mentioned parameters except T reflect the rapid change of jet velocity when the stages of inflow and outflow are transformed into each other. Thus the evolution of phase transition in liquid can be affected by the parameters ε/T and vout/vin mainly, but by parameter T negligibly. When ε/T is small, the single bubble resulting from phase transition is separated from the boundary. On the contrary, when ε/T is large, the corresponding single bubble attaches to the bottom boundary, and the process of phase transition is accelerated. Moreover, with vout/vin increases, the domain filled by vapor phase in the square cavity, decreases slightly. In summary, this study reveals the details of phase transition process in liquid subjected to the zero-net-mass-flux jet.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB026002)和国家科技支撑计划(批准号:2013BAF01B02)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB026002) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2013BAF01B02).
    [1]

    Ceccio S 2010 Annu. Rev. Fluid. Mech. 42 183

    [2]

    Soyama H, Yanauchi Y, Sato K, Ikohagi T, Oba R, Oshima R 1996 Exp. Therm. Fluid. Sci. 12 411

    [3]

    Cai B H 2005 M. S. Dissertation (Wuhan: Wuhan University) (in Chinese) [蔡标华 2005 硕士学位论文 (武汉: 武汉大学)]

    [4]

    Soyama H 2005 J. Fluid. Eng.-T. ASME 127 1095

    [5]

    Yang M, Zhang F, Kang C, Gao B 2010 Chin. J. Mech. Eng.-EN. 23 797

    [6]

    Wright M, Epps B, Dropkin A, Truscott T 2013 Exp. Fluids 54 1541

    [7]

    Alehossein H, Qin Z 2007 Int. J. Numer. Meth. Eng. 72 780

    [8]

    Peng G, Shimizu S, Fujikawa S 2011 J. Fluid. Sci. Tech. 6 499

    [9]

    Lu Y Y, Wang X C, Kang Y, Chen Y L 2009 J. China Univ. Petroleum (Edition of Natural Sciences) 33 57 (in Chinese) [卢义玉, 王晓川, 康勇, 陈宇龙 2009 中国石油大学学报 (自然科学版) 33 57]

    [10]

    Tan F 2011 M. S. Dissertation (Daqing: Northeast Petroleum University) (in Chinese) [谭放 2011 硕士学位论文 (大庆: 东北石油大学)]

    [11]

    Li H B, Huang P H, Liu M R, Kong L J 2001 Acta Phys. Sin. 50 837 (in Chinese) [李华兵, 黄乒花, 刘慕仁, 孔令江 2001 50 837]

    [12]

    Ma C F 2006 Acta Aerodyn. Sin. 24 495 (in Chinese) [马昌凤 2006 空气动力学学报 24 495]

    [13]

    L X Y, Li H B 2001 Acta Phys. Sin. 50 422 (in Chinese) [吕晓阳, 李华兵 2001 50 422]

    [14]

    Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press) pp97–253

    [15]

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp174–206 (in Chinese) [何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第174–206页]

    [16]

    Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 62 144704]

    [17]

    Dawson S, Chen S, Doolen G 1993 J. Chem. Phys. 98 1514

    [18]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [19]

    Shan X, Doolen G 1995 J. Stat. Phys. 81 379

    [20]

    Sankaranarayanan K, Shan X, Kevrekidis I, Sundaresan S 2002 J. Fluid. Mech. 452 61

    [21]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 59 178]

    [22]

    Zou Q, He X 1997 Phys. Fluids 9 1591

    [23]

    Guo Z, Zheng C, Shi B 2002 Chin. Phys. 11 366

  • [1]

    Ceccio S 2010 Annu. Rev. Fluid. Mech. 42 183

    [2]

    Soyama H, Yanauchi Y, Sato K, Ikohagi T, Oba R, Oshima R 1996 Exp. Therm. Fluid. Sci. 12 411

    [3]

    Cai B H 2005 M. S. Dissertation (Wuhan: Wuhan University) (in Chinese) [蔡标华 2005 硕士学位论文 (武汉: 武汉大学)]

    [4]

    Soyama H 2005 J. Fluid. Eng.-T. ASME 127 1095

    [5]

    Yang M, Zhang F, Kang C, Gao B 2010 Chin. J. Mech. Eng.-EN. 23 797

    [6]

    Wright M, Epps B, Dropkin A, Truscott T 2013 Exp. Fluids 54 1541

    [7]

    Alehossein H, Qin Z 2007 Int. J. Numer. Meth. Eng. 72 780

    [8]

    Peng G, Shimizu S, Fujikawa S 2011 J. Fluid. Sci. Tech. 6 499

    [9]

    Lu Y Y, Wang X C, Kang Y, Chen Y L 2009 J. China Univ. Petroleum (Edition of Natural Sciences) 33 57 (in Chinese) [卢义玉, 王晓川, 康勇, 陈宇龙 2009 中国石油大学学报 (自然科学版) 33 57]

    [10]

    Tan F 2011 M. S. Dissertation (Daqing: Northeast Petroleum University) (in Chinese) [谭放 2011 硕士学位论文 (大庆: 东北石油大学)]

    [11]

    Li H B, Huang P H, Liu M R, Kong L J 2001 Acta Phys. Sin. 50 837 (in Chinese) [李华兵, 黄乒花, 刘慕仁, 孔令江 2001 50 837]

    [12]

    Ma C F 2006 Acta Aerodyn. Sin. 24 495 (in Chinese) [马昌凤 2006 空气动力学学报 24 495]

    [13]

    L X Y, Li H B 2001 Acta Phys. Sin. 50 422 (in Chinese) [吕晓阳, 李华兵 2001 50 422]

    [14]

    Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press) pp97–253

    [15]

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp174–206 (in Chinese) [何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第174–206页]

    [16]

    Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 62 144704]

    [17]

    Dawson S, Chen S, Doolen G 1993 J. Chem. Phys. 98 1514

    [18]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [19]

    Shan X, Doolen G 1995 J. Stat. Phys. 81 379

    [20]

    Sankaranarayanan K, Shan X, Kevrekidis I, Sundaresan S 2002 J. Fluid. Mech. 452 61

    [21]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 59 178]

    [22]

    Zou Q, He X 1997 Phys. Fluids 9 1591

    [23]

    Guo Z, Zheng C, Shi B 2002 Chin. Phys. 11 366

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制.  , 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 包西程, 邢耀文, 张凡凡, 张德轲, 刘秦杉, 杨海昌, 桂夏辉. 基于亚稳态液膜空化的长程疏水力作用机制.  , 2024, 73(3): 036801. doi: 10.7498/aps.73.20231109
    [3] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维气泡群熟化过程模拟.  , 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [4] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维汽泡群熟化过程模拟.  , 2022, (): . doi: 10.7498/aps.71.20212183
    [5] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法.  , 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [6] 艾晋芳, 解军, 胡国辉. 零质量射流作用下红细胞在微管道中变形的数值模拟.  , 2020, 69(23): 234701. doi: 10.7498/aps.69.20200971
    [7] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟.  , 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [8] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟.  , 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [9] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究.  , 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [10] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法.  , 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [11] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟.  , 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [12] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流.  , 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [13] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟.  , 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性.  , 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [15] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟.  , 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [16] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用.  , 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [17] 张鹏利, 林书玉. 声场作用下两空化泡相互作用的研究.  , 2009, 58(11): 7797-7801. doi: 10.7498/aps.58.7797
    [18] 张新明, 周超英, Islam Shams, 刘家琦. 用格子Boltzmann方法数值模拟三维空化现象.  , 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [19] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟.  , 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程.  , 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  6622
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-10
  • 修回日期:  2013-10-24
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map