-
使用格子Boltzmann方法对零质量射流激励下液体的相变演化过程进行了数值模拟和分析. 首先,提出了此特定零质量射流进出口边界的处理格式. 然后,结合Shan和Doolen提出的单组分多相模型,模拟了方腔内液体受到此零质量射流激励而诱发产生空化的过程,着重分析了三个重要射流参数ε/T,T和vout/vin对方腔内液体相变的影响. 分析表明:演化过程中方腔内气相节点数量在初始阶段急剧增长,然后经振荡趋于一个稳定值. 由于ε/T和vout/vin可以反映射流在出入方腔两个过程间相互转换时的急剧变化,所以能够影响方腔中的液体相变的演化;而改变参数T并不影响射流速度的变化程度,所以T对液体相变的影响较弱. 对于本文给定的参数取值,ε/T较小时,方腔内液体相变生成的孤立气泡脱离壁面;较大的ε/T下产生附着于方腔壁面的气泡,并且能够加速液体的相变进程;vout/vin的增加使方腔内相应的孤立气泡所覆盖的范围略有减小. 研究结果揭示了零质量射流激励诱发的液体相变过程,为进一步探索液体空化的控制途径奠定了基础.
-
关键词:
- 零质量射流 /
- 相变 /
- 空化 /
- 格子Boltzmann方法
The phase transition in liquid due to the excitation of zero-net-mass-flux jet is simulated using the lattice Boltzmann method. First, the scheme for inlet/outlet boundary of the specific zero-net-mass-flux jet is derived. Then, with the model proposed by Shan and Doolen for single component and multiphase flow, the process of a single bubble formation in a liquid-filled square cavity is simulated, with the excitation of zero-net-mass-flux jet taken into consideration. Further, the investigation of the effects of three significant parameters, ε/T, T and vout/vin, on phase transition in the square cavity is carried out. The results show that the number of vapor nodes increases rapidly in the early stage of phase transition, and then achieves a constant after a long term fluctuation. In some sense, the previously mentioned parameters except T reflect the rapid change of jet velocity when the stages of inflow and outflow are transformed into each other. Thus the evolution of phase transition in liquid can be affected by the parameters ε/T and vout/vin mainly, but by parameter T negligibly. When ε/T is small, the single bubble resulting from phase transition is separated from the boundary. On the contrary, when ε/T is large, the corresponding single bubble attaches to the bottom boundary, and the process of phase transition is accelerated. Moreover, with vout/vin increases, the domain filled by vapor phase in the square cavity, decreases slightly. In summary, this study reveals the details of phase transition process in liquid subjected to the zero-net-mass-flux jet.-
Keywords:
- zero-net-mass-flux jet /
- phase transition /
- cavitation /
- lattice Boltzmann method
[1] Ceccio S 2010 Annu. Rev. Fluid. Mech. 42 183
[2] Soyama H, Yanauchi Y, Sato K, Ikohagi T, Oba R, Oshima R 1996 Exp. Therm. Fluid. Sci. 12 411
[3] Cai B H 2005 M. S. Dissertation (Wuhan: Wuhan University) (in Chinese) [蔡标华 2005 硕士学位论文 (武汉: 武汉大学)]
[4] Soyama H 2005 J. Fluid. Eng.-T. ASME 127 1095
[5] Yang M, Zhang F, Kang C, Gao B 2010 Chin. J. Mech. Eng.-EN. 23 797
[6] Wright M, Epps B, Dropkin A, Truscott T 2013 Exp. Fluids 54 1541
[7] Alehossein H, Qin Z 2007 Int. J. Numer. Meth. Eng. 72 780
[8] Peng G, Shimizu S, Fujikawa S 2011 J. Fluid. Sci. Tech. 6 499
[9] Lu Y Y, Wang X C, Kang Y, Chen Y L 2009 J. China Univ. Petroleum (Edition of Natural Sciences) 33 57 (in Chinese) [卢义玉, 王晓川, 康勇, 陈宇龙 2009 中国石油大学学报 (自然科学版) 33 57]
[10] Tan F 2011 M. S. Dissertation (Daqing: Northeast Petroleum University) (in Chinese) [谭放 2011 硕士学位论文 (大庆: 东北石油大学)]
[11] Li H B, Huang P H, Liu M R, Kong L J 2001 Acta Phys. Sin. 50 837 (in Chinese) [李华兵, 黄乒花, 刘慕仁, 孔令江 2001 50 837]
[12] Ma C F 2006 Acta Aerodyn. Sin. 24 495 (in Chinese) [马昌凤 2006 空气动力学学报 24 495]
[13] L X Y, Li H B 2001 Acta Phys. Sin. 50 422 (in Chinese) [吕晓阳, 李华兵 2001 50 422]
[14] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press) pp97–253
[15] He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp174–206 (in Chinese) [何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第174–206页]
[16] Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 62 144704]
[17] Dawson S, Chen S, Doolen G 1993 J. Chem. Phys. 98 1514
[18] Shan X, Chen H 1993 Phys. Rev. E 47 1815
[19] Shan X, Doolen G 1995 J. Stat. Phys. 81 379
[20] Sankaranarayanan K, Shan X, Kevrekidis I, Sundaresan S 2002 J. Fluid. Mech. 452 61
[21] Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 59 178]
[22] Zou Q, He X 1997 Phys. Fluids 9 1591
[23] Guo Z, Zheng C, Shi B 2002 Chin. Phys. 11 366
-
[1] Ceccio S 2010 Annu. Rev. Fluid. Mech. 42 183
[2] Soyama H, Yanauchi Y, Sato K, Ikohagi T, Oba R, Oshima R 1996 Exp. Therm. Fluid. Sci. 12 411
[3] Cai B H 2005 M. S. Dissertation (Wuhan: Wuhan University) (in Chinese) [蔡标华 2005 硕士学位论文 (武汉: 武汉大学)]
[4] Soyama H 2005 J. Fluid. Eng.-T. ASME 127 1095
[5] Yang M, Zhang F, Kang C, Gao B 2010 Chin. J. Mech. Eng.-EN. 23 797
[6] Wright M, Epps B, Dropkin A, Truscott T 2013 Exp. Fluids 54 1541
[7] Alehossein H, Qin Z 2007 Int. J. Numer. Meth. Eng. 72 780
[8] Peng G, Shimizu S, Fujikawa S 2011 J. Fluid. Sci. Tech. 6 499
[9] Lu Y Y, Wang X C, Kang Y, Chen Y L 2009 J. China Univ. Petroleum (Edition of Natural Sciences) 33 57 (in Chinese) [卢义玉, 王晓川, 康勇, 陈宇龙 2009 中国石油大学学报 (自然科学版) 33 57]
[10] Tan F 2011 M. S. Dissertation (Daqing: Northeast Petroleum University) (in Chinese) [谭放 2011 硕士学位论文 (大庆: 东北石油大学)]
[11] Li H B, Huang P H, Liu M R, Kong L J 2001 Acta Phys. Sin. 50 837 (in Chinese) [李华兵, 黄乒花, 刘慕仁, 孔令江 2001 50 837]
[12] Ma C F 2006 Acta Aerodyn. Sin. 24 495 (in Chinese) [马昌凤 2006 空气动力学学报 24 495]
[13] L X Y, Li H B 2001 Acta Phys. Sin. 50 422 (in Chinese) [吕晓阳, 李华兵 2001 50 422]
[14] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press) pp97–253
[15] He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp174–206 (in Chinese) [何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第174–206页]
[16] Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 62 144704]
[17] Dawson S, Chen S, Doolen G 1993 J. Chem. Phys. 98 1514
[18] Shan X, Chen H 1993 Phys. Rev. E 47 1815
[19] Shan X, Doolen G 1995 J. Stat. Phys. 81 379
[20] Sankaranarayanan K, Shan X, Kevrekidis I, Sundaresan S 2002 J. Fluid. Mech. 452 61
[21] Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 59 178]
[22] Zou Q, He X 1997 Phys. Fluids 9 1591
[23] Guo Z, Zheng C, Shi B 2002 Chin. Phys. 11 366
计量
- 文章访问数: 6642
- PDF下载量: 456
- 被引次数: 0