搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究

唐冬华 薛林 孙立忠 钟建新

引用本文:
Citation:

B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究

唐冬华, 薛林, 孙立忠, 钟建新

Doping effect of boron in Hg0.75Cd0.25Te: first-principles study

Tang Dong-Hua, Xue Lin, Sun Li-Zhong, Zhong Jian-Xin
PDF
导出引用
  • 基于密度泛函理论的第一性原理方法,通过形成能和束缚能的计算研究了B在Hg0.75Cd0.25Te 中的掺杂效应.结果表明B在Hg0.75Cd0.25Te中存在着两种主要形态:第一种是在完整的 Hg0.75Cd0.25Te材料中B稳定存在于六角间隙位置而非替位.此时,B形成容易激活的三级施主使材料表现为n型.另一种是在有Hg空位存在的Hg0.75Cd0.25Te中B更容易与Hg空位结合形成缺陷复合体,其束缚能达到了0.96 eV.这种复合体在Hg0.75Cd0.25Te材料中形成单施主也使材料表现为n型.考虑到辐照损伤形成的Hg空位受主,这种B与Hg空位的复合体是制约B离子在MCT中注入激活的一个重要因素.
    Using the first-principles method based on the density functional theory, we study the doping effect of B impurity in HgCdTe (MCT).We find that the most stable configuration of the impurity is at the B hexagonal interstitial position, rather than at the in-situ substitution. The electronic structures and the density of states of B hexagonal interstitial doped MCT are systematically investigated. Near neighbour (NN) and next-near-neighbor (NNN) atoms around the B impurity are obviously relaxed. The relaxation induces the breaking of NN Te-Hg covalent bond. Moreover, B hexagonal interstitial behaves as triple n-type dopant. The charged state analysis indicates that Bih(2Hg1Cd) with three positive charges is most stable and forms an effecient donor. However, as long as the Hg vacancy exists, complex impurity between Hg vacancy and B impurity can be easily formed, its binding energy reaches up to 0.96 eV. Such complex behaves as single n-type dopant. Considering radiation damage of B ion implantation, the complex is a main factor restricting the activation of B ion in MCT.
    • 基金项目: 国家自然科学基金(批准号:10874143,10774127),教育部博士点新教师基金(批准号:20070530008)和湖南省高校创新平台开放基金(批准号:10K065)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos.10874143,10774127),the Doctoral Fund of Ministry of Education of China(Grant No.20070530008), and the Scientific Research Fund of Hunan Provincial Education Department(Grant No.10K065).
    [1]

    Chen G B, Lu W, Cai W Y 2004 Acta Phys. Sin. 53 3(in Chinese)[陈贵宾,陆卫,蔡炜颖 2004 53 3]

    [2]

    SunL Z, Chen X S, Zhou X H 2005 Acta Phys. Sin. 54 4(in Chinese)[孙立忠,陈效双,周孝好 2005 54 4]

    [3]

    Han J L, Sun L Z, Chen X S, Lu W, Zhong J X 2010 Acta Phys. Sin. 59 2(in Chinese)[韩金良,孙立忠,陈效双,陆卫,钟建新 2010 59 2]

    [4]

    Neumark G F 1997 Mater. Sci. Eng. R 21 1

    [5]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [6]

    Shao J, Lü X, Guo S L, Lu W 2009 Phys. Rev. B 80 155125

    [7]

    Tennant W E, Cockrum C A, Giplin J B, Kinch M A, Reine M A, Ruth R P, Vac J 1992 Sci. Technol. B 10 1359

    [8]

    Huang S H, He J F, Chen J C, Lei C H 2001 Chinese Journal of Semiconductors 22 2(in Chinese)[黄仕华,何景福,陈建才,雷春红 2001 半导体学报 22 5]

    [9]

    Yue F Y, Chen L, Li YW, Hu Z G, Sun L, Yang P X, Chu J H 2010 Chin. Phys. B 19 11 117106

    [10]

    Berding M A, Sher A, Chen A B 1990 J. Appl. Phys. 68 5064

    [11]

    Brding M A, van Schilfgaarde M, Sher A 1994 Phys. Rev. B 50 1519

    [12]

    Reine M B, Sood A K, Tredwell T J 1981 Semiconductors and Semimetals vol 18 ed Willardson R K and Beer A C(Now York:Academic) p246

    [13]

    Chen G B, Li Z F, Cai W Y, He L, Hu X N, Lu W, Shen X C 2003 Acta Phys. Sin 52 6(in Chinese)[陈贵宾,李志锋,蔡炜颖,何力,胡晓宁,陆卫,沈学础 2003 52 6]

    [14]

    Destefans G L 1983 Nucl. Instr. Methods 209/210 567

    [15]

    Destefanis G L 1988 J. Cryst. Growth 86 700

    [16]

    Kim Y H, Kim T S, Redfern D A, Musca C A, Lee H C, Kim C K 2000 J. Electron. Mater. 29 6

    [17]

    White J, Pal R, Dell J M, Musca C A, Antoszewski J, Faraone L, Burke P 2001 J. Electron. Mater. 30 6

    [18]

    Golding T D, Hellmer R, Bubulac L, Dinan J H,Wang L, ZhaoW, Carmody M, Sankur H O, Edwall D 2006 J. Ele-ctron. Mater. 35 6

    [19]

    Manchanda R, Sharma R K, Malik A, Pal R, Dhaul A, Dutt M B, Basu P K, Thakur O P 2007 J. Appl. Phys. 101 116102

    [20]

    Kumar R, Dutt M B, Nath R, Chander R, Gupta S C 1990 J. Appl. Phys. 68 5564

    [21]

    Baars J, Hurrle A, Rothemund W, Fritzsche C R, Jakobus T 1982 J. Appl. Phys. 53 1461

    [22]

    Bahir G, Kalish R, Nemirovsky Y 1982 Appl. Phys. Lett. 41 1057

    [23]

    Kao T M, Sigmon T W 1986 Appl. Phys. Lett. 49 464

    [24]

    Kao TW, Sigmon TW, Bubulac L O 1987 J. Vac. Sci. Technol. A 5 3175

    [25]

    Kao T M, Sigmon T W 1987 Nucl. Instr. and Methods in Phys.Res. B 21 578

    [26]

    Conway K L, OpydWG, GreinerME, Gibbons J F, Sigmon TW, Bubulac L O 1982 Appl. Phys. Lett. 41 750

    [27]

    Bubulac L O 1985 Appl. Phys. Lett. 46 976

    [28]

    Bubulac L O 1988 J. Cryst. Growth 86 723

    [29]

    Wu T B, Lam K Y, Chiang C D, Gong J, Yang S J 1988 J. Appl. Phys. 63 4986

    [30]

    Talipov N Kh, Ovsyuk V N, Remesnik V G, Vasilyev V V 1997 Mater. Sci. and Eng. B 44 266

    [31]

    Lanir M,Wang C C, Vanderwyck A H B 1978 in IEDM Tech. Dig. p421

    [32]

    Perdew J P, Burkeand K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Sun L Z, Chen X S, Zhao J J 2007 Phys. Rev. B 76 045219

    [34]

    Zhang S B, Northrup J E 1991 Phys. Rev. B 67 2339

    [35]

    Pöykkö S, Chadi D J 1999 Phys. Rev. Lett. 83 1231

    [36]

    Makov G, Payne M C 1995 Phys. Rev. B 51 4014

    [37]

    Tanaka T, Matsunaga K, Ikuhara Y, Yamamoto T 2003 Phys. Rev. B 68 205213

    [38]

    Blochl P E, Jepsen Q, Andersen O K 1994 Phys. Rev. B 49 16223

    [39]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

    [40]

    Wei S H, Zunger A 1991 Phys. Rev. B 43 1662

  • [1]

    Chen G B, Lu W, Cai W Y 2004 Acta Phys. Sin. 53 3(in Chinese)[陈贵宾,陆卫,蔡炜颖 2004 53 3]

    [2]

    SunL Z, Chen X S, Zhou X H 2005 Acta Phys. Sin. 54 4(in Chinese)[孙立忠,陈效双,周孝好 2005 54 4]

    [3]

    Han J L, Sun L Z, Chen X S, Lu W, Zhong J X 2010 Acta Phys. Sin. 59 2(in Chinese)[韩金良,孙立忠,陈效双,陆卫,钟建新 2010 59 2]

    [4]

    Neumark G F 1997 Mater. Sci. Eng. R 21 1

    [5]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [6]

    Shao J, Lü X, Guo S L, Lu W 2009 Phys. Rev. B 80 155125

    [7]

    Tennant W E, Cockrum C A, Giplin J B, Kinch M A, Reine M A, Ruth R P, Vac J 1992 Sci. Technol. B 10 1359

    [8]

    Huang S H, He J F, Chen J C, Lei C H 2001 Chinese Journal of Semiconductors 22 2(in Chinese)[黄仕华,何景福,陈建才,雷春红 2001 半导体学报 22 5]

    [9]

    Yue F Y, Chen L, Li YW, Hu Z G, Sun L, Yang P X, Chu J H 2010 Chin. Phys. B 19 11 117106

    [10]

    Berding M A, Sher A, Chen A B 1990 J. Appl. Phys. 68 5064

    [11]

    Brding M A, van Schilfgaarde M, Sher A 1994 Phys. Rev. B 50 1519

    [12]

    Reine M B, Sood A K, Tredwell T J 1981 Semiconductors and Semimetals vol 18 ed Willardson R K and Beer A C(Now York:Academic) p246

    [13]

    Chen G B, Li Z F, Cai W Y, He L, Hu X N, Lu W, Shen X C 2003 Acta Phys. Sin 52 6(in Chinese)[陈贵宾,李志锋,蔡炜颖,何力,胡晓宁,陆卫,沈学础 2003 52 6]

    [14]

    Destefans G L 1983 Nucl. Instr. Methods 209/210 567

    [15]

    Destefanis G L 1988 J. Cryst. Growth 86 700

    [16]

    Kim Y H, Kim T S, Redfern D A, Musca C A, Lee H C, Kim C K 2000 J. Electron. Mater. 29 6

    [17]

    White J, Pal R, Dell J M, Musca C A, Antoszewski J, Faraone L, Burke P 2001 J. Electron. Mater. 30 6

    [18]

    Golding T D, Hellmer R, Bubulac L, Dinan J H,Wang L, ZhaoW, Carmody M, Sankur H O, Edwall D 2006 J. Ele-ctron. Mater. 35 6

    [19]

    Manchanda R, Sharma R K, Malik A, Pal R, Dhaul A, Dutt M B, Basu P K, Thakur O P 2007 J. Appl. Phys. 101 116102

    [20]

    Kumar R, Dutt M B, Nath R, Chander R, Gupta S C 1990 J. Appl. Phys. 68 5564

    [21]

    Baars J, Hurrle A, Rothemund W, Fritzsche C R, Jakobus T 1982 J. Appl. Phys. 53 1461

    [22]

    Bahir G, Kalish R, Nemirovsky Y 1982 Appl. Phys. Lett. 41 1057

    [23]

    Kao T M, Sigmon T W 1986 Appl. Phys. Lett. 49 464

    [24]

    Kao TW, Sigmon TW, Bubulac L O 1987 J. Vac. Sci. Technol. A 5 3175

    [25]

    Kao T M, Sigmon T W 1987 Nucl. Instr. and Methods in Phys.Res. B 21 578

    [26]

    Conway K L, OpydWG, GreinerME, Gibbons J F, Sigmon TW, Bubulac L O 1982 Appl. Phys. Lett. 41 750

    [27]

    Bubulac L O 1985 Appl. Phys. Lett. 46 976

    [28]

    Bubulac L O 1988 J. Cryst. Growth 86 723

    [29]

    Wu T B, Lam K Y, Chiang C D, Gong J, Yang S J 1988 J. Appl. Phys. 63 4986

    [30]

    Talipov N Kh, Ovsyuk V N, Remesnik V G, Vasilyev V V 1997 Mater. Sci. and Eng. B 44 266

    [31]

    Lanir M,Wang C C, Vanderwyck A H B 1978 in IEDM Tech. Dig. p421

    [32]

    Perdew J P, Burkeand K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Sun L Z, Chen X S, Zhao J J 2007 Phys. Rev. B 76 045219

    [34]

    Zhang S B, Northrup J E 1991 Phys. Rev. B 67 2339

    [35]

    Pöykkö S, Chadi D J 1999 Phys. Rev. Lett. 83 1231

    [36]

    Makov G, Payne M C 1995 Phys. Rev. B 51 4014

    [37]

    Tanaka T, Matsunaga K, Ikuhara Y, Yamamoto T 2003 Phys. Rev. B 68 205213

    [38]

    Blochl P E, Jepsen Q, Andersen O K 1994 Phys. Rev. B 49 16223

    [39]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

    [40]

    Wei S H, Zunger A 1991 Phys. Rev. B 43 1662

  • [1] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算.  , 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究.  , 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [4] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响.  , 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [5] 莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰. Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究.  , 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [6] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究.  , 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [7] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究.  , 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [8] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究.  , 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [9] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究.  , 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [11] 张伟, 徐朝鹏, 王海燕, 陈飞鸿, 何畅. 碘化铟晶体本征缺陷的第一性原理研究.  , 2013, 62(24): 243101. doi: 10.7498/aps.62.243101
    [12] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算.  , 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [13] 郝红飞, 王静, 孙锋, 张澜庭. Dy在Nd2Fe14B晶格中的占位及其对Fe原子磁矩影响的第一性原理计算.  , 2013, 62(11): 117501. doi: 10.7498/aps.62.117501
    [14] 孟凡顺, 赵星, 李久会. B掺入Cu∑5晶界间隙位性质的第一性原理研究.  , 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [15] 张玲, 何智兵, 廖国, 谌家军, 许华, 李俊. B掺杂对Ti薄膜结构与性能的影响.  , 2012, 61(18): 186803. doi: 10.7498/aps.61.186803
    [16] 刘显坤, 刘颖, 钱达志, 郑洲. He原子掺杂铝材料的第一性原理研究.  , 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [17] 李虹, 王绍青, 叶恒强. Nb掺杂对γ-TiAl抗氧化能力影响的第一性原理研究.  , 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [18] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究.  , 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [19] 耶红刚, 陈光德, 竹有章, 张俊武. 六方AlN本征缺陷的第一性原理研究.  , 2007, 56(9): 5376-5381. doi: 10.7498/aps.56.5376
    [20] 全知觉, 孙立忠, 叶振华, 李志锋, 陆 卫. 碲镉汞异质结能带结构的优化设计.  , 2006, 55(7): 3611-3616. doi: 10.7498/aps.55.3611
计量
  • 文章访问数:  6515
  • PDF下载量:  528
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-25
  • 修回日期:  2011-05-12
  • 刊出日期:  2012-01-05

/

返回文章
返回
Baidu
map