-
白光通常被认为是非相干的,然而,近年来广受关注的超连续激光——白激光,有激光强度高、相干性好的特点,挑战了这一局限性。尽管白激光已经被提出并在技术上得到了广泛的发展,但对其光波性能,尤其是空间相干性的具体分析却十分缺乏,这在一定程度上限制了其实际应用。本文对课题组2023年自主研制的由高强度飞秒激光通过二阶、三阶非线性效应展宽谱带所产生的高强度、超平坦谱带白激光开展了波前强度、偏振特性以及空间相干性的详细实验研究和分析。通过使用带通滤波片从白色激光中提取多个分量,利用杨氏双缝干涉仪(YDSI)测量干涉条纹的对比度,以评估其空间相干性。实验结果显示,白激光的波前强度呈准高斯分布,光斑均匀,是线偏振光。白激光在YDSI中产生的可见光波段平均干涉条纹对比度是0.77,表明它具有优异的空间相干性。所有这些数据将为白色激光在彩色全息、白光干涉仪表面层析、显微成像及其他需要具有一定相干性的白光的应用领域提供有价值的指导。White light is typically considered incoherent; however, the recently popular supercontinuum laser—also known as white laser—that spans the visible spectrum, features high laser intensity and good coherence, challenging this traditional limitation. The white laser has a wide range of applications, including multi-channel confocal microscopy, color holography, and white light interferometric surface topography. Although white lasers have been proposed and developed extensively in terms of technology, specific analyses of their optical wave properties—especially spatial coherence—are still lacking. Since many applications impose certain requirements on the spatial coherence of white light, the lack of research into the spatial coherence of white lasers has, to some extent, limited their practical use.
This paper presents a detailed experimental study and analysis of the wavefront intensity, polarization characteristics, and spatial coherence of a high-intensity, ultra-flat spectrum white laser independently developed by our research group in 2023. The laser was generated by broadening the spectrum of a high-intensity Ti:sapphire femtosecond laser through second- and third-order nonlinear effects.
A bandpass filter was used to extract eight components from the white laser, with central wavelengths ranging from 405 nm to 700 nm and a bandwidth of 10 nm each. By measuring the performance of these eight quasi-monochromatic lasers, the characteristics of the white laser across the visible spectrum can be evaluated.
CCD imaging of the collimated quasi-monochromatic laser spots revealed that their wavefront intensities exhibit a quasi-Gaussian distribution with uniform beam profiles. Polarization measurements using polarizers at various angles showed that the white laser is linearly polarized. A Young's Double-Slit Interferometer (YDSI) was used to measure the interference fringe contrast of the eight quasi-monochromatic beams to assess their spatial coherence. The experimental results showed that the average interference fringe contrast across the visible spectrum was 0.77, with little variation among different wavelengths. This indicates that the white laser has excellent spatial coherence in the visible range.
The eight quasi-monochromatic lasers in the visible spectrum all exhibit quasi-Gaussian wavefront intensity distributions, linear polarization, and high spatial coherence. This indicates that the white laser inherits the excellent properties of the Ti:sapphire laser. All of this data provides valuable guidance for the application of white lasers in areas such as color holography, white light interferometric surface tomography, microscopic imaging, and other fields that require white light with a certain degree of coherence.-
Keywords:
- White laser /
- Spatial coherence /
- Interference fringes visibility
-
[1] Alfano R R 1990 Applied Optics 29 1242
[2] Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592
[3] Fork R L, Tomlinson W J, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1
[4] Froehly L, Meteau J 2012 Opt. Fiber Technol. 18 411
[5] Travers J C, Grigorova T F, Brahms C, Belli F 2019 Nat. Photonics 13 547
[6] Elu U, Maidment L, Vamos L, Tani F, Novoa D, Frozs H, Badikov V, Badikov D, Petrov V, Russell J, Biegert J 2021 Nat. Photonics 15 277
[7] Schliesser A, Picqué N, Hänsch T W 2012 Nat. Photonics 6 440
[8] Udem T, olzwarth R, Hänsch T W 2002 Nature 416 233
[9] Petersen C R, Møller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830
[10] Jiang X, Joly N Y, Finger M A, Babic F, Wong K L, Travers J C, Russell J 2015 Nat. Photonics 9 133
[11] He P, Liu Y, Zhao K, Teng H, He X, Huang P, Huang H, Zhong S, Jiang Y, Fang S, Hou F, Wei Z 2017 Opt. Lett. 42 474
[12] Mollenauer L F, Stolen R H, Gordon J P, Tomlinson W J 1983 Opt. Lett. 8 289
[13] Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66
[14] Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q, Li Z Y 2014 Light Sci. Appl. 3 e189
[15] Chen B Q, Zhang C, Hu C Y, Liu R J, Li Z Y 2015 Phys. Rev. Lett. 115 083902
[16] Chen B Q, Hong L H, Hu C Y 2021 Research 2021
[17] Li M Z, Hong L H, Li Z Y 2022 Research 2022
[18] Hong L H, Liu L Q, Liu Y Y, Qian J Y, Feng R Y, Li W K, Li Y Y, Peng Y J, Leng Y X, Li R X, Li Z Y 2023 Light Sci. Appl. 12 199
[19] Hong L H, Yang H Y, Li Z Y 2023 Research 6 0210
[20] Knapp T, Lima N, Daigle N, Duan S, Merchant J L, Sawyer T W 2024 J. Biomed. Opt. 29 016007
[21] Hassan M A 2025 Appl. Opt. 64 654
[22] Shimobaba T, Ito T 2003 Opt. Rev. 10 339
[23] Kueny E, Meier J, Levecq X, Varkentina N, Kärtner F X, Calendron L 2018 Opt. Express 26 31299
[24] Genty G, Friberg A T, Turunen J 2016 Prog. Opt. 61 71
[25] Melnik M V, Tcypkin A N, Kozlov S A 2018 Rom. J. Phys. 63 203
[26] Zeylikovich I, Alfano R R 2003 Appl. Phys. B 77 265
[27] Hong L H, Hu C, Liu Y Y, He H J, Liu L Q, Wei Z Y, Li Z Y 2023 PhotoniX 4 11
[28] Su Y B, Fang S B, Gao Y T, Zhao K, Chang G Q, Wei Z Y 2021 Appl. Phys. Lett. 118 261102
[29] Wang P, Huang J, Xie S, Troles J, Russell J 2021 Photon. Res. 9 630
[30] Zhu X, Zhao D, Zhang B, Yang L Y, Yang Y K, Liu S, Hou J 2023 Opt. Express 31 13182
[31] Chang K Y, Chen G Y, Yu H C, Liu J M 2023 Opt. Commun. 533 129281
[32] Feng L B, Lu X, Liu X L, Ge X L, Ma J L, Li Y T, Chen L M, D Q L, Wang W M, Teng H, Wang Z H, Sheng Z M, Wei Z Y, He D W, Zhang J 2021 Acta Phys. Sin. 61 174206
计量
- 文章访问数: 46
- PDF下载量: 3
- 被引次数: 0