-
High-entropy alloys (HEAs), as a significant branch of multi-principal element alloys, have garnered extensive attention due to their exceptional mechanical and functional properties. This review focuses on the order-disorder phase transition mechanisms in silicon-based HEAs, systematically addressing the thermodynamic and kinetic regulation principles and their impact on material performance. Studies have demonstrated that the incorporation of silicon optimizes atomic size matching and mixing enthalpy, enabling the coordinated coexistence of ordered and disordered phases in high-entropy alloys, thereby significantly enhancing their mechanical and physicochemical properties.
The evolution of ordered and disordered phases is critically governed by fabrication processes. Advanced fabrication techniques, such as laser cladding and powder metallurgy, alongside temperature/pressure modulation, enable precise control over phase formation and hierarchical structures, achieving synergistic strengthening through multiphase architectures.Rapid cooling techniques like laser cladding suppress nucleation and growth of brittle intermetallic compounds, favoring single-phase FCC structures. Conversely, controlled annealing treatments can induce phase transitions towards ordered BCC/B2 structures, enhancing high-temperature stability. Advanced techniques such as powder plasma arc additive manufacturing (PPA-AM) leverage rapid solidification to refine grain size and disperse second phases effectively. Thermodynamic drivers, particularly the competition between entropy and enthalpy quantified by the parameter Ω, alongside external stimuli like pressure, provide precise control over phase transformation pathways and final microstructures.
Furthermore, silicon incorporation enhances functional properties, including elevated electrical resistivity, tailored magnetic responses, and improved high-temperature oxidation resistance through Al2O3/SiO2 layer formation. Despite these advancements, challenges remain in understanding atomic-scale dynamics of phase transitions and scaling up cost-effective manufacturing processes. Future efforts should integrate multiscale characterization, computational modeling, and performance validation under extreme conditions to accelerate the engineering applications of silicon-based HEAs in aerospace, energy storage, and electronic devices. -
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299
[2] Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375-377 213
[3] Huang E W, Lee W J, Singh S S, Kumar P, Lee C Y, Lam T N, Chin H H, Lin B H, Liaw P K 2022 Mater. Sci. Eng.: R: Rep. 147 100645
[4] Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107
[5] Chandrakar R, Chandraker S, Kumar A, Jaiswal A 2024 Mater. Res. Express 11 116512
[6] Sohrabi M J, Kalhor A, Mirzadeh H, Rodak K, Kim H S 2024 Prog. Mater Sci. 144 101295
[7] Wu Y, Li Z, Feng H, He S 2022 Materials 15 3992
[8] Liu F, Liaw P, Zhang Y 2022 Metals 12 501
[9] Luan H W, Shao Y, Li J F, Mao W L, Han Z D, Shao C, Yao K F 2020 Scr. Mater. 179 40
[10] Ye X C, Xu Z Y, Wang T, Xu D, Zhang W, Fang D 2020 Spec. Cast. Nonferrous Alloys 40 1323 (in Chinese) [叶喜葱,徐张洋,王童,徐东,张文,方东 2020 特种铸造及有色合金 40 1323]
[11] Li Y, Zhang P, Zhang J, Chen Z, Shen B 2021 Corros. Sci. 190 109633
[12] Kumar A, Chandrakar R, Chandraker S, Rao K R, Chopkar M 2021 J. Alloys Compd. 856 158193
[13] Zhang Y, Zhang M, Li D, Zuo T, Zhou K, Gao M C, Sun B, Shen T 2019 Metals 9 382
[14] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater Sci. 61 1
[15] Lee H, Sharma A, Ahn B 2023 J. Alloys Compd. 947 169545
[16] Gearhart C A 1990 Am. J. Phys. 58 468
[17] Li Z, Zhao S, Ritchie R O, Meyers M A 2019 Prog. Mater Sci. 102 296
[18] Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534
[19] Yang X, Zhang Y 2012 Mater. Chem. Phys. 132 233
[20] Yan X, Liaw P K, Zhang Y 2021 Metall. Mater. Trans. A 52 2111
[21] Wu G, Liu C, Yan Y Q, Liu S, Ma X, Yue S, Shan Z W 2024 Nat. Commun. 15 1223
[22] Wu G, Liu S, Wang Q, Rao J, Xia W, Yan Y Q, Eckert J, Liu C, Ma E, Shan Z W 2023 Nat. Commun. 14 3670
[23] Miracle D B, Senkov O N 2017 Acta Mater. 122 448
[24] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G, Lu Z 2018 Nature 563 546
[25] Soni V, Gwalani B, Senkov O N, Viswanathan B, Alam T, Miracle D B, Banerjee R 2018 J. Mater. Res. 33 3235
[26] Soni V, Senkov O N, Gwalani B, Miracle D B, Banerjee R 2018 Sci. Rep. 8 8816
[27] Soni V, Gwalani B, Alam T, Dasari S, Zheng Y, Senkov O N, Miracle D, Banerjee R 2020 Acta Mater. 185 89
[28] Huang X, Miao J, Luo A A 2018 J. Mater. Sci. 54 2271
[29] Huang X, Miao J, Luo A A 2022 Scr. Mater. 210 114462
[30] Sundman B, Chen Q, Du Y 2018 J. Phase Equilib. Diffus. 39 678
[31] Singh P, Johnson D D 2021 J. Mater. Res. 37 136
[32] Gu X, Zhuang Y X, Jia P 2022 Mater. Sci. Eng. A 840 142983
[33] Cheng P, Zhao Y, Xu X, Wang S, Sun Y, Hou H 2020 Mater. Sci. Eng. A 772 138681
[34] Zhu J M, Fu H M, Zhang H F, Wang A M, Li H, Hu Z Q 2010 Mater. Sci. Eng. A 527 7210
[35] Lin Y Z, Zheng Y H, Chen F, Yan J H 2023 Trans. Mater. Heat Treat. 44 69 (in Chinese) [林应征, 杨洪宇, 陈 芳, 颜建辉 2023 材料热处理学报 44 69]
[36] Babilas R, Łoński W, Boryło P, Kądziołka Gaweł M, Gębara P, Radoń A 2020 J. Magn. Magn. Mater. 502 166492
[37] Zhang H, Pan Y, He Y 2011 J. Therm. Spray Technol. 20 1049
[38] Zhang S, Han B, Li M, Zhang Q, Hu C, Jia C, Li Y, Wang Y 2021 Surf. Coat. Technol. 417 127218
[39] Santodonato L J, Liaw P K, Unocic R R, Bei H, Morris J R 2018 Nat. Commun. 9 4520
[40] Torralba J M, Alvaredo P, García Junceda A 2020 Powder Metall. 63 227
[41] Brif Y, Thomas M, Todd I 2015 Scr. Mater. 99 93
[42] Han C, Fang Q, Shi Y, Tor S B, Chua C K, Zhou K 2020 Adv. Mater. 32 1903855
[43] Luo J, Wang J, Su C, Geng Y, Chen X 2024 J. Mater. Eng. Perform. 33 12413
[44] Shun T T, Hung C H, Lee C F 2010 J. Alloys Compd. 493 105
[45] Hazen R M, Navrotsky A 1996 Am. Mineral. 81 1021
[46] Starenchenko S V 2012 Russ. Phys. J. 54 965
[47] Ma Y, Fan J, Zhang L, Zhang M, Cui P, Dong W, Yu P, Li Y, Liaw P K, Li G 2018 Intermetallics 103 63
[48] Ma L, Wang L, Nie Z, Wang F, Xue Y, Zhou J, Cao T, Wang Y, Ren Y 2017 Acta Mater. 128 12
[49] Ji C, Ma A, Jiang J 2022 J. Alloys Compd. 900 163508
[50] Kumar A, Dhekne P, Swarnakar A K, Chopkar M 2018 Mater. Res. Express 6 026532
[51] Lin T, Feng M, Lian G, Lu H, Chen C, Huang X 2024 Mater. Charact. 216 114246
[52] Li Z, Taheri M, Torkamany P, Heidarpour I, Torkamany M J 2024 Vacuum 219 112749
[53] Shang X, Wang Z, He F, Wang J, Li J, Yu J 2017 Sci. China Technol. Sci. 61 189
[54] Wang S, Wu Y, Gesmundo F, Niu Y 2008 Oxid. Met. 69 299
[55] Jiang S M, Xu C Z, Li H Q, Liu S C, Gong J, Sun C 2010 Corros. Sci. 52 435
[56] Zuo T T, Li R B, Ren X J, Zhang Y 2014 J. Magn. Magn. Mater. 371 60
[57] Wen J, Liu X, Li Z, Li W 2023 J. Alloys Compd. 934 167622
[58] Su Y, Lei X, Chen W, Su Y, Liu H, Ren S, Tong R, Lin Y, Jiang W, Liu X, Su D, Zhang Y 2024 Chem. Eng. J. 500 157197
[59] Lei X, Wang Y, Wang J, Su Y, Ji P, Liu X, Guo S, Wang X, Hu Q, Gu L, Zhang Y, Yang R, Zhou G, Su D 2023 Small Methods 8 2300754
计量
- 文章访问数: 32
- PDF下载量: 4
- 被引次数: 0