搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子级制造赋能非晶材料趋向性能极限

罗鹏 赵睿 沈来权 孙永昊 曹乘榕 鲁振 孙保安 白海洋 汪卫华

引用本文:
Citation:

原子级制造赋能非晶材料趋向性能极限

罗鹏, 赵睿, 沈来权, 孙永昊, 曹乘榕, 鲁振, 孙保安, 白海洋, 汪卫华

Atomic-level fabrication enabling amorphous materials to approach the performance limits

LUO Peng, ZHAO Rui, SHEN Laiquan, SUN Yonghao, CAO Chengrong, LU Zhen, SUN Baoan, BAI Haiyang, WANG Weihua
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 非晶材料因其跨尺度结构均一性,规避了传统晶体材料晶格缺陷敏感的固有特性,在众多高技术领域有着不可替代的重要应用。然而,由于处于热力学非平衡态,非晶材料会发生趋于平衡态的结构弛豫,导致服役过程中的性能退化甚至失效。此外,非晶结构的无序性、复杂性伴随产生玻色峰与隧穿二能级系统等低能激发模式,引发材料内耗与热噪声,制约其在高端技术设备中的性能表现。因此,如何有效提升非晶材料的稳定性、抑制低能激发,成为突破其性能极限的关键所在。近年来研究发现,基于表面动力学特性的原子级制造,可成功制备超稳非晶材料,实现对非晶材料微观结构、稳定性及低能激发进行常规方法难以企及的有效调控。本文将深入探讨非晶材料中原子级制造的机理,重点阐述超稳非晶材料相较于普通非晶材料的结构特征与性能优越性,并展望原子级制造在非晶材料和物质领域未来的研究方向与发展趋势。
    Amorphous materials, owing to their cross-scale structural uniformity, circumvent the inherent sensitivity to defects as in traditional crystalline materials. As a result, they have irreplaceable and critical applications in numerous advanced technological fields. However, due to their thermodynamically non-equilibrium nature, amorphous materials undergo structural relaxation toward equilibrium, causing performance degradation or even failure during the period of service. Additionally, the complex and disordered structure of amorphous materials results in low-energy excitations, such as boson peak and tunneling two-level systems, which contribute to internal friction and thermal noise of the materials. These factors significantly limit their performance in advanced technological applications. Therefore, effectively enhancing the stability of amorphous materials and suppressing low-energy excitations are crucial steps toward surpassing their performance limits. Recent studies have demonstrated that atomic-level fabrication based on enhanced surface dynamics can successfully produce ultrastable amorphous materials, achieving an unprecedented degree of control over their microstructure, stability, and low-energy excitations, far beyond what conventional methods can attain. This article delves deeply into the underlying mechanisms of atomic-level fabrication for amorphous materials, focuses on the structural features and superior performances of ultrastable amorphous materials compared to conventional ones, and outlines future research directions and development trends of atomic-level fabrication in this field.
  • [1]

    Gravitational Waves Detected 100 Years After Einstein's Prediction https://www.ligo.caltech.edu/news/ligo20160211[2025-06-22]

    [2]

    Humankind's Most Important Material Main D https://www.theatlantic.com/technology/archive/2018/04/humankinds-most-importantmaterial/557315/[2025-06-22]

    [3]

    Kennedy D, Norman C 2005 Science 30975

    [4]

    Hodge I M 1995 Science 2671945

    [5]

    Meng S, Hao Q, Wang B, Wang Y, Pineda E, Qiao J 2025 J. Appl. Phys. 137055108

    [6]

    Luo P, Lu Z, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. B 93104204

    [7]

    Luo P, Wen P, Bai H Y, Ruta B, Wang W H 2017 Phys. Rev. Lett. 118225901

    [8]

    Luo P, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. Lett. 116175901

    [9]

    Wang W, Luo P 2018 Acta Metall. Sin. 541479(in Chinese)[汪卫华, 罗鹏2018金属学报 541479]

    [10]

    Luo P, Li M X, Jiang H Y, Wen P, Bai H Y, Wang W H 2017 J. Appl. Phys. 121135104

    [11]

    Ruta B, Chushkin Y, Monaco G, Cipelletti L, Pineda E, Bruna P, Giordano V M, GonzalezSilveira M 2012 Phys. Rev. Lett. 109165701

    [12]

    Giordano V M, Ruta B 2016 Nat. Commun. 710344

    [13]

    Evenson Z, Ruta B, Hechler S, Stolpe M, Pineda E, Gallino I, Busch R 2015 Phys. Rev. Lett. 115175701

    [14]

    Wang Z, Riechers B, Derlet P M, Maaß R 2024 Acta Mater. 267119730

    [15]

    Riechers B, Das A, Dufresne E, Derlet P M, Maaß R 2024 Nat. Commun. 156595

    [16]

    Luo P, Li M X, Jiang H Y, Zhao R, Zontone F, Zeng Q S, Bai H Y, Ruta B, Wang W H 2020 Phys. Rev. B 102054108

    [17]

    Zhu F, Hirata A, Liu P, Song S, Tian Y, Han J, Fujita T, Chen M 2017 Phys. Rev. Lett. 119215501

    [18]

    Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 93965

    [19]

    Mauro J C, Uzun S S, Bras W, Sen S 2009 Phys. Rev. Lett. 102155506

    [20]

    Müller C, Cole J H, Lisenfeld J 2019 Rep. Prog. Phys. 82124501

    [21]

    Yang L, Vajente G, Fazio M, Ananyeva A, Billingsley G, Markosyan A, Bassiri R, Prasai K, Fejer M M, Chicoine M, Schiettekatte F, Menoni C S 2021 Sci. Adv. 7 eabh1117

    [22]

    Meißner A, Voigtländer T, Meißner S M, Kühn U, Schneider S, Shnirman A, Weiss G 2021 Phys. Rev. B 103224209

    [23]

    Monroe C, Kim J 2013 Science 3391169

    [24]

    Stephens R, Liu X 2021 Low Energy Excitations in Disordered Solids (World Scientific, Singapore)

    [25]

    Luo P, Fakhraai Z 2023 Annu. Rev. Phys. Chem. 74361

    [26]

    Ediger M D 2017 J. Chem. Phys. 147210901

    [27]

    Rodriguez-Tinoco C, Gonzalez-Silveira M, Ramos M A, Rodriguez-Viejo J 2022 Riv. Nuovo Cim. 45325

    [28]

    Chen F, Lam C H, Tsui O K C 2014 Science 343975

    [29]

    Zhu L, Brian C W, Swallen S F, Straus P T, Ediger M D, Yu L 2011 Phys. Rev. Lett. 106256103

    [30]

    Luo P, Cao C R, Zhu F, Lv Y M, Liu Y H, Wen P, Bai H Y, Vaughan G, di Michiel M, Ruta B, Wang W H 2018 Nat. Commun. 91389

    [31]

    Luo P, Jaramillo C, Wallum A M, Liu Z, Zhao R, Shen L, Zhai Y, Spear J C, Curreli D, Lyding J W, Gruebele M, Wang W, Allain J P, Z Y 2020 ACS Appl. Nano. Mater. 312025

    [32]

    Zhang Y, Fakhraai Z 2017 Phys. Rev. Lett. 118066101

    [33]

    Zhang Y, Fakhraai Z 2017 Proc. Natl. Acad. Sci. USA 1144915

    [34]

    Zhang Y, Glor E C, Li M, Liu T, Wahid K, Zhang W, Riggleman R A, Fakhraai Z 2016 J. Chem. Phys. 145114502

    [35]

    Fakhraai Z, Forrest J A 2008 Science 319600

    [36]

    Hao Z, Ghanekarade A, Zhu N, Randazzo K, Kawaguchi D, Tanaka K, Wang X, Simmons D S, Priestley R D, Zuo B 2021 Nature 596372

    [37]

    Chai Y, Salez T, McGraw J D, Benzaquen M, Dalnoki-Veress K, Raphaël E, Forrest J A 2014 Science 343994

    [38]

    Yang Z, Fujii Y, Lee F K, Lam C H, Tsui O K C 2010 Science 3281676

    [39]

    Wang B, Gao X, Su R, Guan P 2024 Sci. China Phys. Mech. Astron. 67236111

    [40]

    Bi Q L, Lü Y J, Wang W H 2018 Phys. Rev. Lett. 120

    [41]

    Sun G, Saw S, Douglass I, Harrowell P 2017 Phys. Rev. Lett. 119245501

    [42]

    Ashtekar S, Lyding J, Gruebele M 2012 Phys. Rev. Lett. 109166103

    [43]

    Ashtekar S, Nguyen D, Zhao K, Lyding J, Wang W H, Gruebele M 2012 J. Chem. Phys. 137141102

    [44]

    Cao C R, Lu Y M, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 1073113

    [45]

    Chen L, Cao C R, Shi J A, Lu Z, Sun Y T, Luo P, Gu L, Bai H Y, Pan M X, Wang W H 2017 Phys. Rev. Lett. 118016101

    [46]

    Cao C R, Huang K Q, Shi J A, Zheng D N, Wang W H, Gu L, Bai H Y 2019 Nat. Commun. 101966

    [47]

    Ediger M D, Forrest J A 2014 Macromolecules 47471

    [48]

    Tian H, Xu Q, Zhang H, Priestley R D, Zuo B 2022 Appl. Phys. Rev. 911316

    [49]

    Ediger M D, Gruebele M, Lubchenko V, Wolynes P G 2021 J. Phys. Chem. B 1259052

    [50]

    Liang S Y, Hao Q, Xing G H, Wang B, Wang Y J, Pineda E, Qiao J C 2025 Acta Mater. 293121125

    [51]

    Wang B, Gao X, Qiao J 2024 Rare Met. Mater. Eng. 5370

    [52]

    Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315353

    [53]

    Kearns K L, Swallen S F, Ediger M D, Wu T, Sun Y, Yu L 2008 J. Phys. Chem. B 1124934

    [54]

    Raegen A N, Yin J, Zhou Q, Forrest J A 2020 Nat. Mater. 191110

    [55]

    Moratalla M, Rodríguez-López M, Rodríguez-Tinoco C, Rodríguez-Viejo J, Jiménez-Riobóo R J, Ramos M A 2023 Commun. Phys. 6274

    [56]

    Ramos M A, Pérez-Castañeda T, Jiménez-Riobóo R J, Rodrígueziguez-Tinoco C, Rodrígueziguez-Viejo J 2015 Low Temp. Phys. 41412

    [57]

    Khomenko D, Scalliet C, Berthier L, Reichman D R, Zamponi F 2020 Phys. Rev. Lett. 124225901

    [58]

    Perez-Castaneda T, Rodriguez-Tinoco C, Rodriguez-Viejo J, Ramos M A 2014 Proc. Natl. Acad. Sci. USA 11111275

    [59]

    Singh S, Ediger M D, de Pablo J J 2013 Nat. Mater. 12139

    [60]

    Bagchi K, Ediger M D 2020 J. Phys. Chem. Lett. 116935

    [61]

    Ediger M D, de Pablo J, Yu L 2019 Acc. Chem. Res. 52407

    [62]

    Luo P, Zhu F, Lv Y M, Lu Z, Shen L Q, Zhao R, Sun Y T, Vaughan G B M, di Michiel M, Ruta B, Bai H Y, Wang W H 2021 ACS Appl. Mater. Interfaces 1340098

    [63]

    Walters D M, Richert R, Ediger M D 2015 J. Chem. Phys. 142134504

    [64]

    Sepúlveda A, Swallen S F, Ediger M D 2013 J. Chem. Phys. 13812

    [65]

    Dalal S S, Ediger M D 2015 J. Phys. Chem. B 1193875

    [66]

    Swallen S F, Traynor K, McMahon R J, Ediger M D, Mates T E 2009 Phys. Rev. Lett. 102065503

    [67]

    Parisi G, Sciortino F 2013 Nat. Mater. 1294

    [68]

    Parisi G 2022 J. Phys. Complex. 3040201

    [69]

    Ozawa M, Biroli G 2023 Phys. Rev. Lett. 130138201

    [70]

    Hasyim M R, Mandadapu K K 2024 Proc. Natl. Acad. Sci. USA 121 e2322592121

    [71]

    Herrero C, Scalliet C, Ediger M D, Berthier L 2023 Proc. Natl. Acad. Sci. USA 120 e2220824120

    [72]

    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Vila-Costa A, Martinez-Garcia J C, Rodríguez-Viejo J 2019 Phys. Rev. Lett. 123155501

    [73]

    Ruiz-Ruiz M, Vila-Costa A, Bar T, Rodríguez-Tinoco C, Gonzalez-Silveira M, Plaza J A, Alcalá J, Fraxedas J, Rodriguez-Viejo J 2023 Nat. Phys. 191509

    [74]

    Herrero C, Ediger M D, Berthier L 2023 J. Chem. Phys. 159114504

    [75]

    Vila-Costa A, Gonzalez-Silveira M, Rodríguez-Tinoco C, Rodríguez-López M, RodriguezViejo J 2023 Nat. Phys. 19114

    [76]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113045501

    [77]

    Wang Z, Wang W H 2019 Natl. Sci. Rev. 6304

    [78]

    Luo P, Lu Z, Zhu Z G, Li Y Z, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 106031907

    [79]

    Pei C, Zhao R, Fang Y, Wu S, Cui Z, Sun B, Lan S, Luo P, Wang W, Feng T 2020 J. Alloys. Compd. 836155506

    [80]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 55823

    [81]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101121906

    [82]

    Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102101903

    [83]

    Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 211240

    [84]

    Luo P, Wolf S E, Govind S, Stephens R B, Kim D H, Chen C Y, Nguyen T, Wąsik P, Zhernenkov M, Mcclimon B, Fakhraai Z 2024 Nat. Mater. 23688

    [85]

    Zhang A, Moore A R, Zhao H, Govind S, Wolf S E, Jin Y, Walsh P J, Riggleman R A, Fakhraai Z 2022 J. Chem. Phys. 156244703

    [86]

    Dalal S S, Fakhraai Z, Ediger M D 2013 J. Phys. Chem. B 11715415

    [87]

    Beasley M S, Bishop C, Kasting B J, Ediger M D 2019 J. Phys. Chem. Lett. 104069

    [88]

    Guo Y, Morozov A, Schneider D, Chung J W, Zhang C, Waldmann M, Yao N, Fytas G, Arnold C B, Priestley R D 2012 Nat. Mater. 11337

    [89]

    Sun Q, Miskovic D M, Laws K, Kong H, Geng X, Ferry M 2020 Appl. Surf. Sci. 533147453

    [90]

    Kearns K L, Still T, Fytas G, Ediger M D 2010 Adv. Mater. 2239

    [91]

    Liu M, Cao C R, Lu Y M, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 11031901

    [92]

    Ràfols-Ribé J, Will P A, Hänisch C, Gonzalez-Silveira M, Lenk S, Rodríguez-Viejo J, Reineke S 2018 Sci. Adv. 4 eaar8332

    [93]

    Yu H B, Tylinski M, Guiseppi-Elie A, Ediger M D, Richert R 2015 Phys. Rev. Lett. 115185501

    [94]

    Rodríguez-Tinoco C, Ngai K L, Rams-Baron M, Rodríguez-Viejo J, Paluch M 2018 Phys. Chem. Chem. Phys. 2021925

    [95]

    Rodríguez-Tinoco C, Rams-Baron M, Ngai K L, Jurkiewicz K, Rodríguez-Viejo J, Paluch M 2018 Phys. Chem. Chem. Phys. 203939

    [96]

    Kasting B J, Beasley M S, Guiseppi-Elie A, Richert R, Ediger M D 2019 J. Chem. Phys. 151144502

    [97]

    Riechers B, Guiseppi-Elie A, Ediger M D, Richert R 2019 J. Chem. Phys. 150214502

    [98]

    Scalliet C, Guiselin B, Berthier L 2022 Phys. Rev. X 12041028

    [99]

    Sokolov A P, Rössler E, Kisliuk A, Quitmann D 1993 Phys. Rev. Lett. 712062

    [100]

    Wang L, Ninarello A, Guan P, Berthier L, Szamel G, Flenner E 2019 Nat. Commun. 1026

    [101]

    Xu D, Zhang S, Tong H, Wang L, Xu N 2024 Nat. Commun. 151424

    [102]

    Mocanu F C, Berthier L, Ciarella S, Khomenko D, Reichman D R, Scalliet C, Zamponi F 2023 J. Chem. Phys. 158014501

    [103]

    Li Y, Yu P, Bai H Y 2008 J. Appl. Phys. 104013520

    [104]

    Pérez-Castañeda T, Jiménez-Riobóo R J, Ramos M A 2014 Phys. Rev. Lett. 112165901

    [105]

    Singh S, de Pablo J J 2011 J. Chem. Phys. 134194903

    [106]

    Dawson K J, Zhu L, Yu L, Ediger M D 2011 J. Phys. Chem. B 115455

    [107]

    Gujral A, O'Hara K A, Toney M F, Chabinyc M L, Ediger M D 2015 Chem. Mater. 273341

    [108]

    Dalala S S, Walters D M, Lyubimov I, De Pablo J J, Ediger M D 2015 Proc. Natl. Acad. Sci. USA 1124227

    [109]

    Bishop C, Thelen J L, Gann E, Toney M F, Yu L, DeLongchamp D M, Ediger M D 2019 Proc. Natl. Acad. Sci. USA 11621421

    [110]

    Walters D M, Antony L, De Pablo J J, Ediger M D 2017 J. Phys. Chem. Lett. 83380

    [111]

    Bishop C, Bagchi K, Toney M F, Ediger M D 2022 J. Chem. Phys. 15614504

    [112]

    Bishop C, Li Y, Toney M F, Yu L, Ediger M D 2020 J. Phys. Chem. B 1242505

    [113]

    Fiori M E, Bagchi K, Toney M F, Ediger M D 2021 Proc. Natl. Acad. Sci. USA 118 e2111988118

    [114]

    Liu T, Exarhos A L, Alguire E C, Gao F, Salami-Ranjbaran E, Cheng K, Jia T, Subotnik J E, Walsh P J, Kikkawa J M, Fakhraai Z 2017 Phys. Rev. Lett. 119095502

    [115]

    Ràfols-Ribé J, Dettori R, Ferrando-Villalba P, Gonzalez-Silveira M, Abad L, Lopeandía A F, Colombo L, Rodríguez-Viejo J 2018 Phys. Rev. Mater. 2035603

    [116]

    Wolf S E, Fulco S, Zhang A, Zhao H, Walsh P J, Turner K T, Fakhraai Z 2022 J. Phys. Chem. Lett. 133360

    [117]

    Bishop C, Gujral A, Toney M F, Yu L, Ediger M D 2019 J. Phys. Chem. Lett. 103536

    [118]

    Bishop C, Chen Z, Toney M F, Bock H, Yu L, Ediger M D 2021 J. Phys. Chem. B 1252761

    [119]

    To Make the Perfect Mirror, Physicists Confront the Mystery of Glass Wolchover N https://www.quantamagazine.org/to-make-the-perfect-mirror-physicists-confront-themystery-of-glass-20200402/[2025-05-17]

    [120]

    Sergio S L, Chigira A K, Oguni M 2015 J. Phys. Chem. B 1194076

    [121]

    Moore A R, Huang G, Wolf S, Walsh P J, Fakhraai Z, Riggleman R A 2019 Proc. Natl. Acad. Sci. USA 1165937

    [122]

    Laventure A, Gujral A, Lebel O, Pellerin C, Ediger M D 2017 J. Phys. Chem. B 1212350

    [123]

    Tylinski M, Beasley M S, Chua Y Z, Schick C, Ediger M D 2017 J. Chem. Phys. 146203317

    [124]

    Zhang A, Moore A R, Zhao H, Govind S, Wolf S E, Jin Y, Walsh P J, Riggleman R A, Fakhraai Z 2022 J. Chem. Phys. 156244703

    [125]

    Ellison C J, Torkelson J M 2003 Nat. Mater. 2695

    [126]

    Ghanekarade A, Phan A D, Schweizer K S, Simmons D S 2023 Nat. Phys. 19800

    [127]

    Paeng K, Swallen S F, Ediger M D 2011 J. Am. Chem. Soc. 1338444

    [128]

    Lyubimov I, Antony L, Walters D M, Rodney D, Ediger M D, de Pablo J J 2015 J. Chem. Phys. 143094502

    [129]

    Bagchi K, Jackson N E, Gujral A, Huang C, Toney M F, Yu L, De Pablo J J, Ediger M D 2019 J. Phys. Chem. Lett. 10164

    [130]

    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Lopeandía A F, Rodríguez-Viejo J 2015 Phys. Chem. Chem. Phys. 1731195

    [131]

    Thoms E, Gabriel J P, Guiseppi-Elie A, Ediger M D, Richert R 2020 Soft Matter 1610860

    [132]

    Sepúlveda A, Leon-Gutierrez E, Gonzalez-Silveira M, Rodríguez-Tinoco C, ClavagueraMora M T, Rodríguez-Viejo J 2011 Phys. Rev. Lett. 107025901

    [133]

    Priestley R D, Ellison C J, Broadbelt L J, Torkelson J M 2005 Science 309456

    [134]

    Pye J E, Rohald K A, Baker E A, Roth C B 2010 Macromolecules 438296

    [135]

    Kawana S, Jones R A L 2003 Eur. Phys. J. E 10223

    [136]

    Frieberg B, Glynos E, Green P F 2012 Phys. Rev. Lett. 108268304

    [137]

    Herminghaus S, Seemann R, Landfester K 2004 Phys. Rev. Lett. 93017801

    [138]

    Mangalara J H, Marvin M D, Simmons D S 2016 J. Phys. Chem. B 1204861

    [139]

    Jin Y, Zhang A, Wolf S E, Govind S, Moore A R, Zhernenkov M, Freychet G, Arabi Shamsabadi A, Fakhraai Z 2021 Proc. Natl. Acad. Sci. USA 118 e2100738118

    [140]

    Han Y, Roth C B 2021 J. Chem. Phys. 155144901

    [141]

    Zhai Y, Luo P, Z Y 2021 Phys. Rev. B 103085424

    [142]

    Chua Y Z, Ahrenberg M, Tylinski M, Ediger M D, Schick C 2015 J. Chem. Phys. 142054506

    [143]

    Bagchi K, Deng C, Bishop C, Li Y, Jackson N E, Yu L, Toney M F, de Pablo J J, Ediger M D 2020 ACS Appl. Mater. Interfaces 1226717

    [144]

    Zhang A, Jin Y, Liu T, Stephens R B, Fakhraai Z 2020 Proc. Natl. Acad. Sci. USA 11724076

    [145]

    Roth C B 2024 Nat. Mater. 23587

    [146]

    Yu H, Luo Y, Samwer K 2013 Adv. Mater. 255904

    [147]

    Nakayama H, Omori K, Ino-u-e K, Ishii K 2013 J. Phys. Chem. B 11710311

    [148]

    Sepúlveda A, Tylinski M, Guiseppi-Elie A, Richert R, Ediger M D 2014 Phys. Rev. Lett. 113045901

    [149]

    Zhang K, Li Y, Huang Q, Wang B, Zheng X, Ren Y, Yang W 2017 J. Phys. Chem. B 1218188

    [150]

    Tong X, Zhang Y E, Shang B S, Zhang H P, Li Z, Zhang Y, Wang G, Liu Y H, Zhao Y, Zhang B, Ke H B, Zhou J, Bai H Y, Wang W H 2024 Nat. Mater. 231193

  • [1] 温景浩, 李晨辉, 涂国华, 万兵兵, 段茂昌, 张锐. 高温化学非平衡与表面微孔隙效应对边界层稳定性影响.  , doi: 10.7498/aps.74.20250269
    [2] 孙思杰, 蒋晗. 各向异性界面动力学对深胞晶生长形态稳定性的影响.  , doi: 10.7498/aps.73.20240362
    [3] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响.  , doi: 10.7498/aps.73.20231631
    [4] 赵睿, 沈来权, 常超, 白海洋, 汪卫华. 月球玻璃.  , doi: 10.7498/aps.72.20231238
    [5] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展.  , doi: 10.7498/aps.69.20191767
    [6] 陈科. 胶体在非晶研究中的应用.  , doi: 10.7498/aps.66.178201
    [7] 孙保安, 王利峰, 邵建华. 非晶力学流变的自组织临界行为.  , doi: 10.7498/aps.66.178103
    [8] 高星辉, 唐冬, 张承云, 郑晖, 陆大全, 胡巍. 非局域表面暗孤子及其稳定性分析.  , doi: 10.7498/aps.63.024204
    [9] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析.  , doi: 10.7498/aps.62.044214
    [10] 蔡善勇, 梅磊, 彭虎庆, 陆大全, 胡巍. 非局域非线性介质中多极表面光孤子的解析解及其稳定性分析.  , doi: 10.7498/aps.61.154211
    [11] 庞浩, 杨钰, 王赞基. 非晶丝端部磁场效应的模拟.  , doi: 10.7498/aps.59.5049
    [12] 庞 浩, 李 根, 王赞基. 磁环中非晶丝的阻抗效应分析.  , doi: 10.7498/aps.57.7194
    [13] 王晓秋, 王保林. 嵌入La和Gd原子的Si24笼团簇的稳定性.  , doi: 10.7498/aps.57.6259
    [14] 王雪俊, 夏海平. GeO2-Bi2O3-MOx(MOx=WO3, BaO)玻璃近红外超宽带发光的研究.  , doi: 10.7498/aps.56.2725
    [15] 朱才镇, 张培新, 许启明, 刘剑洪, 任祥忠, 张黔玲, 洪伟良, 李琳琳. 分子动力学模拟不同组分下CaO-Al2O3-SiO2系玻璃微观结构的转变.  , doi: 10.7498/aps.55.4795
    [16] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究.  , doi: 10.7498/aps.55.6612
    [17] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性.  , doi: 10.7498/aps.55.947
    [18] 高祀建, 欧阳世翕. γ射线辐照对电熔石英玻璃介电性质的影响.  , doi: 10.7498/aps.52.1292
    [19] 邱建荣, 姜雄伟, 朱从善, 干福熹. 飞秒激光作用下光学玻璃和激光玻璃的光致暗化及其ESR研究.  , doi: 10.7498/aps.50.871
    [20] 徐志凌, 杨 鹏, 刘丽英, 侯占佳, 徐 雷, 王文澄. 束缚电荷对玻璃材料二阶光学非线性的影响.  , doi: 10.7498/aps.49.1503
计量
  • 文章访问数:  84
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回
Baidu
map