-
磁性高熵合金在能量转换、磁滞电机、电磁控制机构等相关领域具有一定的应用前景。采用选区激光熔化(SLM)成形技术在不同工艺参数下制备出AlCoCrCuFeNi高熵合金,对合金的相组成、微观组织结构、磁性能和微观力学行为进行了系统研究。结果表明,SLM成形态合金主要由BCC基体相和少量近似球形的FCC纳米析出相组成,其纳米硬度随着激光功率的增加而减小,随着扫描速度的变化在一定范围波动,但是整体均呈现出优异的微观力学性能,且其纳米压痕蠕变变形机制异于传统经典蠕变理论,主要受位错运动控制。SLM成形态合金均表现出典型的半硬磁特性,其饱和磁化强度受SLM工艺参数影响较小,保持在43A·m2/kg左右;矫顽力随着激光功率的增加从1.72 kA/m增加到2.71 kA/m,随着扫描速度的增加从2.37 kA/m减小到1.98 kA/m。磁性能研究表明,该成形态AlCoCrCuFeNi高熵合金的磁性能有望广泛应用于磁控机构等领域。本工作可为后续优化SLM高熵合金的综合磁学性能以及纳米压痕室温蠕变机制提供一定的理论基础和试验方向。
-
关键词:
- 选区激光融化(SLM) /
- AlCoCrCuFeNi高熵合金 /
- 半硬磁特性 /
- 微观力学
Magnetic high-entropy alloy (HEA) is prospective in the application of energy conversion, hysteresis motor, electromagnetic control mechanism and other related fields. In this study, AlCoCrCuFeNi HEA was prepared by selective laser melting (SLM) with different process parameters, and the phase composition, microstructure, magnetic properties and micromechanical behavior were studied systematically. The results show that the SLMed alloys mainly consist of a BCC matrix phase with a small amount of approximately spherical FCC precipitated nanophase. The nanohardness decreases with the increase of laser power and fluctuates in a certain range with the change of scanning speed, but the whole samples show excellent micromechanical properties. Besides, it was found the roomtemperature nanoindentation creep deformation mechanism of AlCoCrCuFeNi HEAs was mainly controlled by dislocation motion, which is different from the traditional classical creep theory. Both SLMed alloys exhibit typical semi-hard magnetic properties. The saturation magnetization is affected slightly by the SLM process parameters and remains at about 43 A·m2/kg because all samples have a similar content of ferromagnetic elements (Fe,Co and Ni). However, the coercivity increases from 1.72 kA/m to 2.71 kA/m with the increase of laser power (P), and decreases from 2.37 kA/m to 1.98 kA/m with the increase of scanning speed (v), which can be attributed to the different effect of porosity and internal stress on the pinning of domain walls under different process parameters (P and v). This work provides a theoretical basis and experimental direction for further study on optimizing comprehensive magnetic properties and room temperature creep mechanism of SLMed high-entropy alloy.-
Keywords:
- Selective laser melting (SLM) /
- AlCoCrCuFeNi high-entropy alloy /
- semi-hard magnetic property /
- micro-mechanical behavior
-
[1] Yan M, Peng X L 2019 Foudamentals of Magnetics and Magnetic Materials (Hangzhou: Zhejiang University Press) p184(in Chinese)[严密,彭晓领 2019 磁学基础与磁性材料 (杭州:浙江大学出版社)第184页]
[2] Borkar T, Gwalani B, Choudhuri D, Mikler C V, Yannetta C J, Chen X, Ramanujan R V, Styles M J, Gibson M A, Banerjee R 2016 Acta Materialia 116 63
[3] Huang P K, Yeh J W, Shun T T, Chen S K 2004 Advanced Engineering Materials 6 74
[4] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Advanced engineering materials 6 299
[5] Cantor B 2014 Entropy 16 4749
[6] Taheriniya S, Sonkusare R, Boll T, Divinski S V, Peterlechner M, Rösner H, Wilde G 2024 Acta Materialia 281 120421
[7] Liu C, Zhang L-C, Wang K, Wang L 2025 Acta Materialia 283 120526
[8] Liu Y, Liang J, Guo W, Sun S, Tian Y, Lin H-T 2024 Journal of Advanced Ceramics 13 780
[9] Feltrin A C, Hedman D, Akhtar F 2024 Journal of Advanced Ceramics 13 1268
[10] Ren X L, Zhang W W,Wu X Y, Wu L, Wang Y X 2020 Acta Phys. Sin. 67 172(in Chinese)[任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞 2020 69 172]
[11] Cheng J J, Qiu X L,Li K, Zhou D,Yuan J J 2022 Acta Phys. Sin. 71 369(in Chinese)[陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 71 369]
[12] Han L, Maccari F, Souza Filho I R, Peter N J, Wei Y, Gault B, Gutfleisch O, Li Z, Raabe D 2022 Nature 608 310
[13] Li Z, Zhang Z, Liu X, Li H, Zhang E, Bai G, Xu H, Liu X, Zhang X 2023 Acta Materialia 254 118970
[14] Yu P F, Zhang L J, Cheng H, Zhang H, Ma M Z, Li Y C, Li G, Liaw P K, Liu R P 2016 Intermetallics 70 82
[15] Zhang M, George E P, Gibeling J C 2021 Scripta Materialia 194 113633
[16] Jo M-G, Suh J-Y, Kim M-Y, Kim H-J, Jung W-S, Kim D-I, Han H N 2022 Materials Science and Engineering: A 838 142748
[17] Cao T, Shang J, Zhao J, Cheng C, Wang R, Wang H 2016 Materials Letters 164 344
[18] Liu C-J, Gadelmeier C, Lu S-L, Yeh J-W, Yen H-W, Gorsse S, Glatzel U, Yeh A-C 2022 Acta Materialia 237 118188
[19] Xu Z, Zhang H, Li W, Mao A, Wang L, Song G, He Y 2019 Additive Manufacturing 28 766
[20] Li J, Zhao K, Li B, Zhao Y, Guo H, Han S Y 2024 J. Mater. Eng. [OL](in Chinese)[李军, 赵锴, 李波, 赵宇, 郭欢, 韩思远 材料工程 OL] (https://link.cnki.net/urlid/11.1800.TB.20240918.1046.002)
[21] Wu S, Qiao D, Zhao H, Wang J, Lu Y 2021 Journal of Alloys and Compounds 889 161800
[22] Zhang M, George E P, Gibeling J C 2021 Acta Materialia 218 117181
[23] Miao J, Yao H, Wang J, Lu Y, Wang T, Li T 2022 Journal of Alloys and Compounds 894 162380
[24] Zhou J, Liao H, Chen H, Huang A 2021 Journal of Alloys and Compounds 859 157851
[25] Karlsson D, Marshal A, Johansson F, Schuisky M, Sahlberg M, Schneider J M, Jansson U 2019 Journal of Alloys and Compounds 784 195
[26] Yu Y, Zhao Y, Feng K, Chen R, Han B, Ji K, Qin M, Li Z, Ramamurty U 2024 Materials Science and Engineering: A 918 147469
[27] Zhao Y, Guo Q, Ma Z, Yu L 2020 Materials Science and Engineering: A 791 139735
[28] Song X, Liaw P K, Wei Z, Liu Z, Zhang Y 2023 Additive Manufacturing 71 103593
[29] Özden M G, Freeman F S H B, Morley N A 2023 Advanced Engineering Materials 25 2300597
[30] Hu X, Xu Z, Jia X, Li S, Zhu Y, Xia A 2025 Journal of Alloys and Compounds 1010 177740
[31] Manzoni A M, Glatzel U 2019 Materials Characterization 147 512
[32] Wang Y, Li R, Niu P, Zhang Z, Yuan T, Yuan J, Li K 2020 Intermetallics 120 106746
[33] Allia P, Baricco M, Tiberto P, Vinai F 1993 Journal of Applied Physics 74 3137
[34] Zhang S Z, Li Z F, Wang R, Sun G B, Liu G H, Yu H Y 2024 Aviat. Manuf. Technol. 67 14(in Chinese) [张尚洲 李子福, 王瑞, 孙广宝,刘国浩,于鸿垚2024 航空制造技术 67 14]
[35] Oboz M, Zajdel P, Zubko M, Świec P, Szubka M, Kądziołka-Gaweł M, Maximenko A, Trump B A, Yakovenko A A 2024 Journal of Magnetism and Magnetic Materials 589 171506
[36] Uporov S, Bykov V, Pryanichnikov S, Shubin A, Uporova N 2017 Intermetallics 83 1
[37] Brück, E H., ed. 2017 Handbook of magnetic materials (Amsterdam: Elsevier) pp 9-11
[38] Tan X, Chen L, Lv M, Peng W, Xu H 2023 Materials 16 7222
[39] Xu Z L 2021 Ph. D. Dissertation (Ma Anshan: Anhui University of Technology) (in Chinese) [徐震霖 2021 博士 学位论文(马鞍山:安徽工业大学)]
[40] Niu P D, Li R D, Yuan T C, Zhu S Y, Chen C, Wang M B, Huang L 2019 Intermetallics 104 24
[41] Poisl W H, Oliver W C, Fabes B D 1995 Journal of Materials Research 10 2024
[42] Nabarro F R N, De Villiers F 2018 Physics of creep and creep-resistant alloys (London: CRC press)pp 46-81
计量
- 文章访问数: 87
- PDF下载量: 4
- 被引次数: 0