搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于87Sr光晶格钟的时域Landau-Zener-Stückelberg-Majorana干涉边带谱的测量

夏京京 刘伟新 周驰华 谭巍 汪涛 常宏

引用本文:
Citation:

基于87Sr光晶格钟的时域Landau-Zener-Stückelberg-Majorana干涉边带谱的测量

夏京京, 刘伟新, 周驰华, 谭巍, 汪涛, 常宏

Measurement of the time-domain Landau-Zener-Stückelberg-Majorana interference sidebands in an 87Sr optical lattice clock

XIA Jingjing, LIU Weixin, ZHOU Chihua, TAN Wei, WANG Tao, CHANG Hong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 时域Landau-Zener-Stückelberg-Majorana干涉在量子态操控、延长量子态寿命和抑制系统退相干方面具有重要应用价值. 本文基于87Sr光晶格钟平台, 通过周期性调制698 nm钟激光频率并优化光钟系统参数, 在快通道极限下实现了Landau-Zener跃迁, 并测量了不同实验参数下的时域Landau-Zener-Stückelberg-Majorana干涉边带谱. 由于调制后的激光与原子相互作用在时域上展现出干涉现象, 因此, 通过改变激光失谐可以探测不同钟激光作用时间下的时域干涉边带谱. 实验结果表明, 当钟激光作用时间为调制周期的整数倍时, 扫描钟激光的频率失谐, 干涉边带谱关于零失谐频率呈非对称分布. 而当作用时间为调制周期的半整数倍时, 干涉边带谱则呈对称分布. 该现象源于钟跃迁量子态演化过程中积累的有效动力学相位. 时域Landau-Zener-Stückelberg-Majorana干涉谱的研究为未来基于光晶格钟平台的态制备和研究噪声对Landau-Zener跃迁的影响奠定了实验基础.
    Landau-Zener-Stückelberg-Majorana (LZSM) interference has significant application value in quantum state manipulation, extending quantum state lifetime, and suppressing decoherence. Optical lattice clock, with a long coherence time, increases the likelihood of experimentally observing time-domain LZSM interference. Although time-dominant Landau-Zener (LZ) Rabi oscillations have already been observed in optical lattice clock, the time-dominant LZSM interference sidebands in optical lattice clock remain unexplored. This study is based on an 87Sr optical lattice clock. By periodically modulating the frequency of the 698-nm clock laser and optimizing the parameters of the optical clock system, LZ transitions are achieved under the fast-passage limit (FPL). During the clock detection, two acoustic optical modulators (AOMs) are employed: AOM1 that compensates for the frequency drift of the clock laser and operates continuously throughout the experiment, and AOM2 that performs traditional clock transition detection and generates a cosine modulation signal by using an external trigger from the RF signal generator in Burst mode. Ultimately, the periodically modulated 698-nm clock laser with a frequency of $\omega (t) = \cos \left[ {\displaystyle\int {\left( {{\omega _{\text{p}}} - A{\omega _{\text{s}}}\cos {\omega _{\text{s}}}t} \right)dt} } \right]$ is used to probe atoms, and the Hamiltonian is                $ {\hat H_n}(t) = \dfrac{h}{2}[\delta + A{\omega _{\text{s}}}\cos ({\omega _{\text{s}}}t)]{\hat \sigma _z} + \dfrac{{h{g_n}}}{2}{\hat \sigma _x} $.As the modulated laser interacts with the atoms, the interference phenomenon is exhibited in the time domain; adjusting the clock laser detuning allows for probing the time-domain LZSM interference sideband spectra at different detection times. The results show that the time-domain LZSM interference sideband consists of multiple sidebands. Specifically, ±kth order sidebands can be observed at δ/ωs = k, where k is an integer, representing constructive interference. Additionally, due to the different LZ Rabi oscillation periods for each sideband, the excitation fractions of different sidebands are also different, resulting in different excitation fractions for sidebands at the same clock detection time. When scanning the frequency of the clock laser, small interference peaks will appear next to the +1st, +4th, +5th, +6th, –3th and –4th order sidebands when detection time is an integer period. These peaks all appear on the right side of the sidebands, thus breaking the symmetry of LZSM interference sidebands. In contrast, when the detection time is a half-integer period, the interference sidebands exhibit symmetric distribution. This phenomenon mainly arises from the effective dynamical phase accumulated during the LZSM interference evolution. Moreover, the excitation fraction is higher than that at half-integer period, which holds potential application value in state preparation research. The experimental results are in excellent agreement with theoretical simulations, confirming the feasibility of conducting time-domain LZSM interference studies on the optical lattice clock. In the future, by further suppressing clock laser noise, the optical lattice clock will provide an ideal experimental platform for studying the effects of noise on LZ transition.
  • 图 1  实验原理图 (a), (b)分别为LZSM干涉实验装置图和时序图; (c)二能级系统免交叉点附近的LZ跃迁示意图. 实线代表绝热表象下的能级E±, 虚线表示非绝热表象下的能级|g$\rangle $和|e$\rangle $

    Fig. 1.  Experimental diagram: (a), (b) The experimental setup and timing sequences of LZSM interference, respectively; (c) schematic diagram of LZ transition at the avoided crossing point of two-level system. The solid lines represent the adiabatic levels E±, and the dashed lines represent the diabatic levels |g$\rangle $ and |e$\rangle $.

    图 2  Rabi振荡谱线

    Fig. 2.  Rabi oscillation.

    图 3  FPL条件下一个调制周期的LZSM干涉谱线. 其中红色带圆形标记的虚线为A = 6.25时的相长干涉谱线, 蓝色带正方形标记的虚线为A = 5.15时的相消干涉谱线

    Fig. 3.  LZSM interference in FPL at one period. The red dashed line with circle markers represents constructive interference at A = 6.25, and the blue dashed line with square markers represents destructive interference at A = 5.15.

    图 4  FPL条件下钟激光作用时间为调制周期的半整数倍时(tP = 7.5和12.5 ms)的时域LZSM干涉边带谱

    Fig. 4.  Time-dominant LZSM interference sidebands in FPL at half-integer period (tP = 7.5 and 12.5 ms).

    图 5  FPL条件下钟激光作用时间为调制周期的整数倍时(tP = 15和20 ms)的时域LZSM干涉边带谱

    Fig. 5.  Time-dominant LZSM interference sidebands in FPL at integer period (tP = 15 and 20 ms).

    图 6  钟跃迁能级随钟激光作用时间变化的示意图 (a), (b)分别代表钟激光频率失谐为δ和–δ时的有效动力学相位累积. 其中红色实线为绝热能级, 蓝色虚线为非绝热能级, 填充区域为绝热演化过程积累的有效动力学相位

    Fig. 6.  Time evolution of energy levels of clock transition with (a) δ and (b) –δ. The red solid lines and the blue dashed lines represent the adiabatic levels and the diabatic levels, respectively. The shade areas represent collected effective dynamic phases during the adiabatic evolution.

    Baidu
  • [1]

    Landau L D 1932 Phys. Z. Sowjetunion 2 46

    [2]

    Zener C 1932 Proc. R. Soc. London, Ser. A 137 696Google Scholar

    [3]

    Stückelberg E C G 1932 Helv. Phys. Acta 5 369

    [4]

    Majorana E 1932 Nuovo Cimento 9 43Google Scholar

    [5]

    Xu K B, Xie T Y, Shi F Z, Wang Z Y, Xu X K, Wang P F, Wang Y, Plenio M B, Du J F 2019 b Sci. Adv. 5 eaax3800Google Scholar

    [6]

    Fuchs G D, Burkard G, Klimov P V, Awschalom D D 2011 Nat. Phys. 7 789Google Scholar

    [7]

    Thalhammer G, Winkler K, Lang F, Schmid S, Grimm R, Denschlag J H 2006 Phys. Rev. Lett. 96 050402Google Scholar

    [8]

    Zenesini A, Lignier H, Tayebirad G, Radogostowicz J, Ciampini D, Mannella R, Wimberger S, Morsch O, Arimondo E 2009 Phys. Rev. Lett. 103 090403Google Scholar

    [9]

    Tayebirad G, Zenesini A, Ciampini D, Mannella R, Morsch O, Arimondo E, Lörch N, Wimberger S 2010 Phys. Rev. A 82 013633Google Scholar

    [10]

    Uehlinger T, Greif D, Jotzu G, Tarruell L, Esslinger T, Wang L, Troyer M 2013 Eur. Phys. J. Spec. Top. 217 121Google Scholar

    [11]

    Teranishi Y, Nakamura H 1998 Phys. Rev. Lett. 81 2032Google Scholar

    [12]

    Saito K, Kayanuma Y 2004 Phys. Rev. B 70 201304(R

    [13]

    Gaudreau L, Granger G, Kam A, Aers G C, Studenikin S A, Zawadzki P, Pioro-Ladrière M, Wasilewski Z R, Sachrajda A S 2012 Nat. Phys. 8 54Google Scholar

    [14]

    Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W, Guo G P, 2013 Nat. Commun. 4 1401Google Scholar

    [15]

    Gaitan F 2003 Phys. Rev. A 68 052314Google Scholar

    [16]

    Tan W, Liu W X, Chen Y X, Zhou C H, Zhao G D, Chang H, Wang T 2024 arXiv: 2408.09922 [Optics]

    [17]

    Liu W X, Wang T, Zhang X F, Li W D 2021 Phys. Rev. A 104 053318Google Scholar

    [18]

    Shevchenko S N, Ashhab S, Nori F 2010 Phys. Rep. 492 1Google Scholar

    [19]

    Sen A, Sen D, Sengupta K 2021 J. Phys. Condens. Matter 33 443003Google Scholar

    [20]

    Liu H Y, Dai M C, Wei L F 2019 Phys. Rev. A. 99 013820Google Scholar

    [21]

    Zhou J W, Huang P, Zhang Q, Wang Z X, Tan T, Xu X K, Shi F Z, Rong X, Ashhab S, Du J F 2014 Phys. Rev. Lett. 112 010503Google Scholar

    [22]

    Aeppli A, Kim K, Warfield W, Safronova M S, Ye J 2024 Phys. Rev. Lett. 133 023401Google Scholar

    [23]

    Boyd M M, Zelevinsky T, Ludlow A D, Foreman S M, Blatt S, Ido T, Ye J 2006 Science 314 1430Google Scholar

    [24]

    Bloom B, Nicholson T L, Williams J, Campbell S, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [25]

    Guo F, Tan W, Zhou C H, Xia J, Chen Y X, Liang T, Liu Q, Liu Y, He D J, Zhou Y Z, Wang W H, Shen Y, Zou H X, Chang H 2021 AIP Adv. 11 125116Google Scholar

    [26]

    Yin M J, Wang T, Lu X T, Li T, Wang Y B, Zhang X F, Li W D, Smerzi A, Chang H 2021 Chin. Phys. Lett. 38 073201Google Scholar

    [27]

    Blatt S, Thosen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M, Ye J 2009 Phys. Rev. A 80 052703Google Scholar

  • [1] 余泽鑫, 刘琪鑫, 孙剑芳, 徐震. 基于二维磁光阱的增强型199Hg冷原子团制备.  , doi: 10.7498/aps.73.20231243
    [2] 胡小华, 卢晓同, 张晓斐, 常宏. 基于原位成像技术的同步频率比对与密度频移测量.  , doi: 10.7498/aps.71.20220600
    [3] 孔德欢, 郭峰, 李婷, 卢晓同, 王叶兵, 常宏. 可搬运锶光晶格钟系统不确定度的评估.  , doi: 10.7498/aps.70.20201204
    [4] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量.  , doi: 10.7498/aps.68.20191147
    [5] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估.  , doi: 10.7498/aps.68.20182294
    [6] 郭阳, 尹默娟, 徐琴芳, 王叶兵, 卢本全, 任洁, 赵芳婧, 常宏. 锶原子光晶格钟自旋极化谱线的探测.  , doi: 10.7498/aps.67.20172759
    [7] 林弋戈, 方占军. 锶原子光晶格钟.  , doi: 10.7498/aps.67.20181097
    [8] 张曦, 刘慧, 姜坤良, 王进起, 熊转贤, 贺凌翔, 吕宝龙. 利用传输腔技术实现镱原子光钟光晶格场的频率稳定.  , doi: 10.7498/aps.66.164205
    [9] 苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震. 中性汞原子磁光阱装载率的优化.  , doi: 10.7498/aps.65.130201
    [10] 胡靖宇, 毛腾飞, 豆福全, 赵清. 复合绝热通道技术在谐相互作用调制的Landau-Zener模型中的应用.  , doi: 10.7498/aps.62.170303
    [11] 张恒, 王文元, 蒙红娟, 马莹, 马云云, 段文山. 玻色-费米混合气体的非线性Landau-Zener隧穿.  , doi: 10.7498/aps.62.110305
    [12] 王建忠, 曹辉, 豆福全. 玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应.  , doi: 10.7498/aps.61.220305
    [13] 王文元, 蒙红娟, 杨阳, 祁鹏堂, 马云云, 马莹, 段文山. 费米超流气体的非线性Landau-Zener 隧穿.  , doi: 10.7498/aps.61.087302
    [14] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为.  , doi: 10.7498/aps.59.3720
    [15] 王沙, 杨志安. 二维周期光子晶格中的非线性Landau-Zener隧穿.  , doi: 10.7498/aps.58.729
    [16] 王沙, 杨志安. 光子晶格中光束演化的二能级模型及非线性Landau-Zener隧穿.  , doi: 10.7498/aps.58.3699
    [17] 叶地发, 傅立斌, 赵 鸿, 刘 杰. 非线性Rosen-Zener跃迁.  , doi: 10.7498/aps.56.5071
    [18] 田 旭, 赵中云, 李建青. 相位Landau态.  , doi: 10.7498/aps.53.703
    [19] 田 旭, 黄湘友. 耦合压缩Landau态.  , doi: 10.7498/aps.48.1399
    [20] 项金真, 夏建白. 磁场下超晶格的子带结构及光跃迁.  , doi: 10.7498/aps.37.1915
计量
  • 文章访问数:  276
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-02-05
  • 上网日期:  2025-02-14

/

返回文章
返回
Baidu
map