搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镜像电荷对低能离子在菱形微孔中传输的影响研究

孙文胜 袁华 刘恩顺 杜战辉 潘俞舟 樊栩宏 王麒俊 赵崭岩 陈乾 万城亮 崔莹 朱丽萍 李鹏飞 王天琦 姚科 Reinhold Schuch 房铁峰 陈熙萌 张红强

引用本文:
Citation:

镜像电荷对低能离子在菱形微孔中传输的影响研究

孙文胜, 袁华, 刘恩顺, 杜战辉, 潘俞舟, 樊栩宏, 王麒俊, 赵崭岩, 陈乾, 万城亮, 崔莹, 朱丽萍, 李鹏飞, 王天琦, 姚科, Reinhold Schuch, 房铁峰, 陈熙萌, 张红强

Influence of Image Charges on the Transport of Low-Energy Ions in Rhombic Micropores

Sun Wen-Sheng, Yuan Hua, Liu En-Shun, Du Zhan-Hui, Pan Yu-Zhou, Fan Xu-Hong, Wang Qi-Jun, Zhao Zhan-Yan, Cheng Qian, Wan Cheng-Liang, Cui Ying, Zhu Li-Ping, Li Peng-Fei, Wang Tian-Qi, Yao Ke, Reinhold Schuch, Fang Tie-Feng, Cheng Xi-Meng, Zhang Hong-Qiang
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 进行了1 keV N2+离子束穿越完全放电的白云母微孔膜实验,测量了零度倾角下离子束入射初期的出射离子二维角分布图。将离子速度对通道壁介电响应的影响引入镜像电荷力表达式,对离子在菱形通道内所受镜像电荷力进行了多阶修正。采用不同近似情况下的镜像电荷力对实验进行了模拟计算,结果表明离子速度对通道壁介电响应的影响会使镜像电荷力降低。对比对镜像电荷力进行多阶修正前后的模拟结果,修正后的结果更接近实验值。模拟计算出的穿透离子图像和实验测得的图像形状基本吻合,均未出现体现成型效应的矩形。但在穿透率和半高宽方面存在差距,实验二维角分布半高宽比计算结果大,且实验穿透率明显小于计算结果。我们分析了模拟计算中的几个可能影响,评估了束流的真实状态以及束流与微孔之间的夹角等因素对模拟和实验之间的差异的影响。束流发散度和束流与微孔间的夹角会对模拟结果产生较大影响,但是这些因素导致的模拟结果与实验出射离子角分布的差别还不够。本工作提供了离子束作为探针进行微孔表面介电响应研究的可能性。
    The study of low-energy, high-charge-state ions traversing insulating nanochannels has focused on the guiding effects due to the deposition of charge, while experimental and theoretical research on the influence of image charge forces caused by the polarization of the channel walls during ion transmission is relatively scarce. We employed a combination of experimental and theoretical methods to conduct experiments on 1 keV N2+ ion beams passing through muscovite microporous membranes. Under the condition of complete discharge of the microporous membrane, we measured the two-dimensional angular distribution of ejected ions at the initial stage of ion beam incidence at a zero-degree inclination. In previous simulation calculations, to simplify the calculation process, first-order image force approximation and static approximation were used to calculate the image charge forces. We found that the results obtained from these calculations still differ from the experimental results. Therefore, we refined the calculation formula for image charge forces, taking into account the full effect of these forces.In previous studies on image charge forces, we neglected the impact of ion velocity on the polarization of the channel walls. We used the surface dielectric response theory of the image force experienced by ions within the micropores, which depends on ion velocity and the distance between the ion and the channel wall, to simulate and calculate the experimental results. We studied the influence of image charge forces caused by surface dielectric response due to ion velocity on the angular distribution of ejected ions. We found discrepancies between the simulated and experimental two-dimensional angular distributions, with the experimental results showing a wider half-height width than the simulated results.
    To explore the effects of beam divergence and the angle between the micropore axis and the beam on ion penetration and the two-dimensional angular distribution of ejected ions, we conducted simulation calculations for 1 keV N2+ under different beam conditions, considering third-order dynamic image charge forces. We analyzed several potential influences in the simulation calculations and assessed the impact of the true state of the beam and the angle between the beam and the micropore on the differences between simulation and experiment. This work provides the possibility of studying the surface dielectric response of micropores using ion beams as probes.
  • [1]

    Spohr R 1990 Ion Tracks and Microtechnology, Viehweg Verlag, Braunschweig.

    [2]

    Martin C R 1994 Science 266 1961.

    [3]

    Stolterfoht N, Yamazaki Y 2016 Physics Reports 629 pp1-107.

    [4]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201.

    [5]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202.

    [6]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl Phys. Lett. 92 023509.

    [7]

    Lemell C, Burgdörfer J, Aumayr F P 2013 Surf. Sci. 88 237.

    [8]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79, 012711.

    [9]

    Stolterfoht N 2013 Phys. Rev. A 87 012902.

    [10]

    Stolterfoht N 2013 Phys. Rev. A 87 032901

    [11]

    Stolterfoht N, Hellhammer R, Juhász Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M, Hoekstra R 2009 Phys. Rev. A 79, 042902.

    [12]

    Kumar R T R, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16, 1697.

    [13]

    Sahana M B, Skog P, Vikor G, Rajendra Kumar R T, Schuch R 2006 Phys. Rev. A 73, 040901(R).

    [14]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101, 223202.

    [15]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82, 052901.

    [16]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Iván I, Gáll F, Sulik B, Víkor Gy, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17, 3915.

    [17]

    Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75, 042901.

    [18]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258, 145.

    [19]

    Juhász Z, sulik B, Biri S, Iván I, Tôkési K, Fekete É, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Víkor Gy, Takács E, Pálinkás J 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267, 321.

    [20]

    Li D, Wang Y, Zhao Y, Xiao G, Zhao D, Xu Z, Li F 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267, 469.

    [21]

    Stolterfoht N, Hellhammer R, Juhasz Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M, Hoekstra R 2009 Phys. Rev. A 79, 042902.

    [22]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R. 2011 Phys. Rev. A 83, 062901.

    [23]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902.

    [24]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258 150.

    [25]

    Pokhil G P, Vokhmyanina K A 2008 Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2 pp237-240

    [26]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901.

    [27]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704.

    [28]

    Harris J, Jones R O 1974 J. Phys. C: Solid State Phys. 7, 3751.

    [29]

    Joseph Ladislas Wiza 1979 Nucl. Instrum. and Methods. 162 pp587-601.

    [30]

    Lampton M, Carlson C W 1979 Rev. Sci. Instrum. 50 pp1093-1097.

    [31]

    http://faster.in2p3.fr/

    [32]

    Ackermann J, Angert N, Neumann R, Trautmann C, Dischner M, Hagen T, Sedlacek M 1996 Nucl. Instrum. Methods Phys. Res., Sect. B 107, 181.

    [33]

    Ward A A 2016 State of the Art Dielectric Materials for Advanced Applications, p10.

    [34]

    Eric Giglio 2023 Phys. Rev. A. 107 012816.

    [35]

    Petzelt J, Rychetský I 2005 Dielectric function, Encyclopedia of Condensed Matter Physics (Elsevier, Amsterdam), p426.

    [36]

    Anton Beran 2002 Reviews in Mineralogy and Geochemistry, 46 pp351-369.

    [37]

    Alireza Fali, Sampath Gamage, Marquez Howard, Thomas G Folland, Nadeemullah Mahadik A, Tom Tiwald, Kirill Bolotin, Joshua D Caldwell, Yohannes Abate 2021 ACS Photonics, 8 pp175-181.

    [38]

    Agostinelli S, Allison J R, Amako K, Apostolakis J, Araujo H, Arcelli P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell'Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giania S, Giannitrapani R, Gibin D, Gomez Cadenas J J, Gonzalez I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones F W, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossow M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Leib F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatsu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O'Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia M G, Ranjard F, Rybin A, Sadilova S, Di Salvo E, Santin G, Sasakib T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaeva E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch J P, Wenaus T, Williams D C, Wright D, Yamada T, Yoshida H, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 pp250-303.

    [39]

    Zhang Qi, Liu Zhonglin, Li Pengfei, Jin Bo, Song Guangyin, Jin Dingkun, Niu Ben, Wei Long, Ha Shuai, Xie Yiming, Ma Yue, Wan Chengliang, Cui Ying, Zhou Peng, Zhang Hongqiang, Chen Ximeng 2018 Phys. Rev. A 97, 042704.

  • [1] 黄厚科, 汶伟强, 黄忠魁, 汪书兴, 汤梅堂, 李杰, 冒立军, 袁洋, 万梦宇, 刘畅, 汪寒冰, 周晓鹏, 赵冬梅, 严凯明, 周云斌, 原有进, 杨建成, 张少锋, 朱林繁, 马新文. 基于HIAF开展高电荷态重离子双电子复合谱精密测量的模拟研究.  , doi: 10.7498/aps.74.20241589
    [2] 樊金泽, 方展伯, 罗超杰, 张汇. 低维材料中的电荷密度波.  , doi: 10.7498/aps.71.20220052
    [3] 牛书通, 周旺, 潘鹏, 朱炳辉, 宋涵宇, 邵剑雄, 陈熙萌. 30 keV He2+在不同倾斜角度的聚碳酸酯微孔膜中的传输过程.  , doi: 10.7498/aps.67.20172484
    [4] 白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄. 20 keV质子在聚碳酸酯微孔膜中传输的动态演化过程.  , doi: 10.7498/aps.66.093401
    [5] 周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌. 100-keV质子在聚碳酸酯微孔膜中传输的动态演化过程.  , doi: 10.7498/aps.65.103401
    [6] 喻寅, 贺红亮, 王文强, 卢铁城. 含微孔洞脆性材料的冲击响应特性与介观演化机制.  , doi: 10.7498/aps.63.246102
    [7] 陈益峰, 陈熙萌, 娄凤君, 徐进章, 绍剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫. Al2O3微孔膜对60 keV O+离子的“导向”效应.  , doi: 10.7498/aps.59.222
    [8] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究.  , doi: 10.7498/aps.58.5578
    [9] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响.  , doi: 10.7498/aps.58.3833
    [10] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究.  , doi: 10.7498/aps.57.2161
    [11] 刘玉文, 陈熙萌, 邵剑雄, 丁宝卫, 付宏斌, 崔 莹, 张红强, 鲁彦霞, 高志民, 杜 娟, 陈 林, 孙光智, 尹永智, 于得洋, 蔡晓红. 低电荷态离子原子碰撞过程中的转移电离机理的研究.  , doi: 10.7498/aps.57.2913
    [12] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额.  , doi: 10.7498/aps.56.5734
    [13] 王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈 军. 宏观电偶极子对聚丙烯铁电驻极体膜电荷储存及其动态特性的影响.  , doi: 10.7498/aps.56.6061
    [14] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线.  , doi: 10.7498/aps.55.2221
    [15] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性.  , doi: 10.7498/aps.55.3705
    [16] 顾永建. 压缩真空态下介观RLC电路中电荷和电流的量子涨落.  , doi: 10.7498/aps.49.965
    [17] 陈志骏, 马洪良, 陈淼华, 李茂生, 施 伟, 陆福全, 汤家镛. 单电荷态钡离子超精细结构光谱.  , doi: 10.7498/aps.48.2038
    [18] 陈斌, 李有泉, 沙健, 张其瑞. 介观电路中电荷的量子效应.  , doi: 10.7498/aps.46.129
    [19] 李景德, 邓人忠, 陈敏, 郑凤. 绝缘液体中空间电荷的扩散和介电谱.  , doi: 10.7498/aps.46.155
    [20] 孔祥贵, 刘益春, 鄂书林. CuPc LB膜与InP接触界面电荷态对Raman光谱的影响.  , doi: 10.7498/aps.43.809
计量
  • 文章访问数:  50
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map