搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Z扫描技术的超快脉冲激光焦深测量方法

林克晟 高宇 钟筱晴 姜小芳

基于Z扫描技术的超快脉冲激光焦深测量方法

林克晟, 高宇, 钟筱晴, 姜小芳

A method of measuring depth of focus in ultrafast pulsed laser systems based on Z-scanning technology

LIN Kesheng, GAO Yu, ZHONG Xiaoqing, JIANG Xiaofang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 传统焦深测量方法大多需要直接捕捉光斑尺寸, 但超快脉冲激光系统焦点处高峰值光强容易使仪器损坏, 而利用自相关和平移探测器等方法光路复杂, 容易引入误差. 考虑到现有方法的局限, 本文提出了一种基于Z扫描技术的超快脉冲激光焦深测量新方法. 从非线性光学理论出发, 推导出利用开孔Z扫描技术测量具有双光子吸收特性的材料时, 透射率曲线符合洛伦兹分布, 拟合后可以快速确定焦点位置及焦深大小. 通过仿真不同因素下的测量结果, 验证了利用Z扫描技术测量光学系统焦深的可行性. 通过实验测量不同样品厚度、入射光强、样品类型及不同透镜超快光学系统的透射率曲线, 表明开孔Z扫描曲线的半高全宽与理论焦深值具有显著一致性. 该方法将焦深大小与透射率曲线的束腰半径相关联, 利用Z扫描曲线的洛伦兹分布特性排除了不同因素对测量结果的影响, 能够准确测量超快脉冲激光聚焦系统的焦深.
    With the development of technology, ultrafast pulse lasers are increasingly used in many fields, such as material processing, imaging, and medical treatments. The precision of these applications often depends on the ability to focus the laser beam into a tight spot with a minimal divergence in a certain range along the optical axis. Therefore, accurate measurement of depth of focus (DOF) is crucial for optimizing the performance of ultrafast laser systems and ensuring the reliability of the results obtained in various experiments and applications. Traditional methods of measuring the DOF mainly rely on directly capturing the beam size, which is impractical in high-intensity environments of ultrafast pulse laser systems due to potential damage to sensors and limitations in measurement accuracy. Furthermore, using autocorrelation or moving sensors to measure DOF in ultrafast pulse lasers introduces complex optical paths, leading to measurement errors and making them unreliable in precise focusing applications.To solve the problem of the limitations of current DOF measurement techniques for ultrafast pulse laser, in this work we propose a novel method based on Z-scan technique. According to nonlinear optical theory, it is found that the transmittance curves obtained from open-aperture (OA) Z-scan measurements of samples exhibiting two-photon absorption (TPA) all follow a Lorentzian distribution. By fitting this curve by Lorentzian distribution, the DOF of ultrafast pulse lasers and the full widths at half maximum (FWHM) of the OA Z-scan curves can be determined rapidly. The transmittance curves of solid and liquid samples with TPA across different types of lenses and microscope objectives within ultrafast optical systems are measured. The results show that the FWHM of the OA Z-scan curves and the theoretical DOF values are well consistent. This method effectively relates the size of the DOF to the beam waist radius derived from the distribution of the Lorentzian function in the OA Z-scan experimental curves, eliminating the influence of other parameters on the measurement results. In conclusion, a novel method of measuring DOF in ultrafast pulse laser systems by using the OA Z-scan technique is proposed. It provides a rapid, accurate and reliable way for determining the DOF in ultrafast laser focusing systems, thereby precisely controlling the ultrafast laser beam for a wide range of applications.
      PACS:
  • 图 1  测量DOF的开孔Z扫描实验装置

    Fig. 1.  Open-aperture Z-scan setup for measuring DOF.

    图 2  在(a)低光强和(b)高光强条件下, 开孔Z扫描计算公式前m项近似仿真的透射率分布曲线以及洛伦兹函数拟合; 取m = 3时, 理论模拟的不同(c)样品厚度、(d)非线性吸收系数下的透射率分布曲线. 插图为相应的归一化透射率分布

    Fig. 2.  Under conditions of (a) low laser intensity and (b) high laser intensity, the simulated transmittance distribution curves for the first m terms of the open-aperture Z-scan calculation formula, and the Lorentzian function fits; simulated transmittance distributions for varying (c) sample thicknesses and (d) nonlinear absorption coefficients when m = 3. The insets show the corresponding normalized transmittance distributions.

    图 3  (a)对光斑直径D进行测量的示意图; (b)光束沿光轴的光强分布模拟及DOF计算值; (c) 1 mm ZnSe的开孔Z扫描曲线及FWHM拟合值

    Fig. 3.  (a) Schematic of measuring the diameter D of the light spot; (b) simulation of intensity distribution along the optical axis and calculated DOF; (c) open-aperture Z-scan curve for 1 mm ZnSe and measured FWHM.

    图 4  (a)相同入射光强下, 不同厚度ZnSe的开孔Z扫描结果; (b)归一化至[0, 1]的结果

    Fig. 4.  (a) Open-aperture Z-scan results for ZnSe with varying thicknesses at a constant incident light intensity; (b) results normalized to the range [0, 1].

    图 5  (a)相同厚度ZnSe, 不同入射光强下的开孔Z扫描结果; (b)归一化到[0, 1]的结果

    Fig. 5.  (a) Open-aperture Z-scan results for ZnSe with varying incident peak intensities at a constant thickness; (b) the results normalized to the range [0, 1].

    图 6  (a)光束沿光轴的光强分布模拟及DOF计算结果; (b) 1 mm 比色皿中的荧光素染料的开孔Z扫描曲线及FWHM拟合值

    Fig. 6.  (a) Simulation of intensity distribution along the optical axis and calculated DOF; (b) open-aperture Z-scan curve for fluorescein in a 1 mm cuvette and measured FWHM.

    图 7  开孔Z扫描结果以及对应的洛伦兹拟合曲线 (a) 20倍消色差显微物镜(焦距10 mm); (b)平凸透镜(焦距50 mm); (c)消色差透镜(焦距50 mm); (d)平凸透镜(焦距100 mm)

    Fig. 7.  Open-aperture Z-scan results and their Lorentzian fit results: (a) 20× apochromatic microscope objective lens (f = 10 mm); (b) planoconvex lens (f = 50 mm); (c) achromatic lens (f = 50 mm); (d) plano-convex lens (f = 100 mm).

    表 1  焦深计算值DOFCal与实验值DOFExp的比较(DOFCal通过(4)式计算, DOFExp是在图7所示的实验中得出的测量值)

    Table 1.  Depth of focus comparison (the DOFCal calculated using Eq. (4) and the DOFExp measured from the experimental transmittance data in Fig. 7).

    聚焦元件DOFCal/mmZ扫描实验测量的DOFExp/mm
    洛伦兹拟合FWHM(m = 1, (3)式)高阶项矫正FWHM(m = 11, (2)式)
    20倍消色差显微物镜(f = 10 mm)0.360.40±0.010.34±0.01
    平凸透镜(f = 50 mm)1.511.65±0.041.47±0.04
    消色差透镜(f = 50 mm)1.511.53±0.041.46±0.02
    平凸透镜(f = 100 mm)4.584.89±0.154.58±0.14
    下载: 导出CSV
    Baidu
  • [1]

    Chen B Y, Chakraborty T, Daetwyler S, Manton J D, Dean K, Fiolka R 2020 Biomed. Opt. Express 11 3830Google Scholar

    [2]

    Bo E, Luo Y M, Chen S, Liu X Y, Wang N S, Ge X, Wang X H, Chen S F, Chen S, Li J H, Liu L B 2017 Optica 4 701Google Scholar

    [3]

    刘有海, 秦天翔, 王英策, 亢兴旺, 刘君, 吴佳琛, 曹良才 2023 72 084205Google Scholar

    Liu Y H, Qin T X, Wang Y C, Kang X W, Liu J, Wu J C, Cao L C 2023 Acta Phys. Sin. 72 084205Google Scholar

    [4]

    王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 61 044208Google Scholar

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208Google Scholar

    [5]

    韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊 2023 72 178701Google Scholar

    Wei Q Y, Ni J L, Li L, Zhang Y Q, Yuan X C, Min C J 2023 Acta Phys. Sin. 72 178701Google Scholar

    [6]

    Adachi S, Ishii H, Kanai T, Ishii N, Kosuge A, Watanabe S 2007 Opt. Lett. 32 2487Google Scholar

    [7]

    Cheng J, Liu C S, Shang S, Liu D, Perrie W, Dearden G, Watkins K 2013 Opt. Laser Technol. 46 88Google Scholar

    [8]

    Guo B S, Sun J Y, Lu Y F, Jiang L 2019 Int. J. Extreme Manuf. 1 032004 032004

    [9]

    Gattass R R, Mazur E 2008 Nat. Photonics 2 219Google Scholar

    [10]

    Kravtsov V, Ulbricht R, Atkin J M, Raschke M B 2016 Nat. Nanotechnol. 11 459Google Scholar

    [11]

    Kumar R S S, Rao S V, Giribabu L, Rao D N 2007 Chem. Phys. Lett. 447 274Google Scholar

    [12]

    Bindra K S, Kar A K 2001 Appl. Phys. Lett. 79 3761Google Scholar

    [13]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [14]

    Tang H C, Men T, Liu X L, Hu Y D, Su J Q, Zuo Y L, Li P, Liang J Y, Downer M C, Li Z Y 2022 Light Sci. Appl. 11 244 244

    [15]

    Castro-Marín P, Castro-Olvera G, Garduño-Mejia J, Rosete-Aguilar M, Bruce N C, Reid D T, Rodríguez-Herrera O G 2017 Opt. Express 25 14473Google Scholar

    [16]

    Ramírez-Guerra C, Rosete-Aguilar M, Garduño-Mejía J 2020 Appl. Opt. 59 1519Google Scholar

    [17]

    Castro-Marín P, Castro-Olvera G, Ruíz C, Garduño-Mejía J, Rosete-Aguilar M, Bruce N C 2017 AIP Adv. 7 105014Google Scholar

    [18]

    Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W 2019 Light Sci. Appl. 8 67 67

    [19]

    Flores A, Wang M R, Yang J J 2004 Appl. Opt. 43 5618Google Scholar

    [20]

    Wang Z W, Li Q, Yan F 2021 J. Phys. D: Appl. Phys. 54 085103 085103

    [21]

    Vázquez-Villa A, Delgado-Atencio J A, Vázquez-Montiel S, Castro-Ramos J, Cunill-Rodríguez M 2015 Opt. Lett. 40 2842Google Scholar

    [22]

    Aydin T, Akgul Y S 2010 Opt. Express 18 14212Google Scholar

    [23]

    Banerji S, Meem M, Majumder A, Sensale-Rodriguez B, Menon R 2020 Optica 7 214Google Scholar

    [24]

    Moreno-Larios J A, Rosete-Aguilar M, Rodríguez-Herrera O G, Garduño-Mejía J 2020 Appl. Opt. 59 7247Google Scholar

    [25]

    Sheik-bahae M, Said A A, Wei T H, Wu Y Y, Hagan D J, Soileau M J, Stryland E W V 1990 Proc. SPIE Int. Soc. Opt. Eng. 1148 41

    [26]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W 1990 IEEE J. Quantum Electron. 26 760Google Scholar

    [27]

    Yin M, Li H P, Tang S H, Ji W 2000 Appl. Phys. B 70 587

  • [1] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究.  , doi: 10.7498/aps.69.20200397
    [2] 赵珂, 宋军, 张瀚. 给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响.  , doi: 10.7498/aps.68.20190471
    [3] 杨哲, 张祥, 肖思, 何军, 顾兵. 双光子激发ZnSe自由载流子超快动力学研究.  , doi: 10.7498/aps.64.177901
    [4] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面.  , doi: 10.7498/aps.64.124102
    [5] 武香莲, 赵珂, 贾海洪, 王富青. 以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性.  , doi: 10.7498/aps.64.233301
    [6] 贾克宁, 刘中波, 梁颖, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对VIC相关的双光子吸收的影响.  , doi: 10.7498/aps.61.064204
    [7] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深.  , doi: 10.7498/aps.61.044208
    [8] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱.  , doi: 10.7498/aps.59.7055
    [9] 苗泉, 赵鹏, 孙玉萍, 刘纪彩, 王传奎. 超短脉冲激光在DBASVP分子中传播时的双光子面积演化和光限幅效应.  , doi: 10.7498/aps.58.5455
    [10] 孙元红, 王传奎. 新型多共轭链有机分子双光子吸收特性的理论研究.  , doi: 10.7498/aps.58.5304
    [11] 孙玉萍, 刘纪彩, 王传奎. 含时电离对飞秒脉冲激光在强双光子吸收介质中传播特性和光限幅行为的影响.  , doi: 10.7498/aps.58.3934
    [12] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应.  , doi: 10.7498/aps.57.238
    [13] 吴文智, 郑植仁, 金钦汉, 闫玉禧, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的三阶光学非线性极化特性.  , doi: 10.7498/aps.57.1177
    [14] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究.  , doi: 10.7498/aps.56.2570
    [15] 赵 珂, 孙元红, 王传奎, 罗 毅, 张 献, 于晓强, 蒋民华. 1,4-二甲氧基-2,5-二乙烯基苯系列衍生物的双光子吸收截面.  , doi: 10.7498/aps.54.2662
    [16] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响.  , doi: 10.7498/aps.53.2112
    [17] 江 俊, 李 宁, 陈贵宾, 陆 卫, 王明凯, 杨学平, 吴 刚, 范耀辉, 李永贵, 袁先漳. FEL诱导半导体材料非线性光吸收.  , doi: 10.7498/aps.52.1403
    [18] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究.  , doi: 10.7498/aps.52.1929
    [19] 张衍亮, 江 丽, 钮月萍, 孙真荣, 丁良恩, 王祖赓. Na2中由一对耦合能级相干叠加导致的双光子吸收的干涉增强效应.  , doi: 10.7498/aps.52.345
    [20] 贾天卿, 陈 鸿, 吴 翔. 导带电子的光吸收及其对材料破坏过程的影响.  , doi: 10.7498/aps.49.1277
计量
  • 文章访问数:  402
  • PDF下载量:  10
出版历程
  • 收稿日期:  2024-11-28
  • 修回日期:  2025-01-10
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map