搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Z扫描技术的超快脉冲激光焦深测量方法

林克晟 高宇 钟筱晴 姜小芳

引用本文:
Citation:

基于Z扫描技术的超快脉冲激光焦深测量方法

林克晟, 高宇, 钟筱晴, 姜小芳

A method for measuring depth of focus in ultrafast pulsed laser systems based on Z-scan technique

Lin Ke-Sheng, Gao Yu, Zhong Xiao-Qing, Jiang Xiao-Fang
PDF
导出引用
  • 传统焦深测量方法大多需要直接捕捉光斑尺寸,但超快脉冲激光系统焦点处高峰值光强容易使仪器损坏,而利用自相关和平移探测器等方法光路复杂,容易引入误差.考虑到现有方法的局限,本文提出了一种基于Z扫描技术的超快脉冲激光焦深测量新方法.从非线性光学理论出发,推导出利用开孔Z扫描技术测量具有双光子吸收特性的材料时,透射率曲线符合洛伦兹分布,拟合后可以快速确定焦点位置及焦深大小.通过仿真不同因素下的测量结果,验证了利用Z扫描技术测量光学系统焦深的可行性.通过实验测量不同样品厚度、入射光强、样品类型及不同透镜超快光学系统的透射率曲线,表明开孔Z扫描曲线的半高全宽与理论焦深值具有显著一致性.该方法将焦深大小与透射率曲线的束腰半径相关联,利用Z扫描曲线的洛伦兹分布特性排除了不同因素对测量结果的影响,能够准确测量超快脉冲激光聚焦系统的焦深.
    As technology advances, ultrafast pulse lasers are increasingly used in a wide range of applications, including material processing, imaging, and medical treatments. The precision of these applications often depends on the ability to focus the laser beam to a tight spot with minimal divergence over a certain range along the optical axis. Therefore, accurate measurement of depth of focus (DOF) is crucial for optimizing the performance of ultrafast laser systems and ensuring the reliability of the results obtained in various experiments and applications. Traditional methods for DOF measurement primarily rely on direct capturing of the beam size, which is impractical in high-intensity environments of ultrafast pulse laser systems due to potential damage to sensors and limitations in measurement accuracy. Furthermore, employing autocorrelation or moving sensors to measure DOF in ultrafast pulse lasers introduces complex optical paths that can lead to measurement errors, making them unreliable for precise focusing applications.
    To address the limitations of current DOF measurement techniques for ultrafast pulse laser, this paper proposes a novel method based on Z-scan technique. According to nonlinear optical theory, we derive that the transmittance curves obtained from open-aperture (OA) Z-scan measurements of samples exhibiting two-photon absorption (TPA) follows a Lorentzian distribution. By fitting this curve by Lorentzian, the DOF of ultrafast pulse lasers can be determined rapidly to the full width at half maximum (FWHM) of the OA Z-scan curves. We conduct experimental measurements of the transmittance curves of solid and liquid samples with TPA across different types of lenses and microscope objectives within ultrafast optical systems. The results demonstrate a significant consistency between the FWHM of the OA Z-scan curves and the theoretical DOF values. This method effectively correlates the size of the DOF with the beam waist radius derived from the distribution of the Lorentzian function in the OA Z-scan experimental curves, eliminating the influence of other parameters on the measurement results. In conclusion, a novel method for measuring DOF in ultrafast pulse laser systems using the OA Z-scan technique was proposed. It provides a rapid, accurate and reliable way to determine the DOF in ultrafast laser focusing systems, enabling precise control of the ultrafast laser beam for a wide range of applications.
  • [1]

    Chen B Y, Chakraborty T, Daetwyler S, Manton J D, Dean K, Fiolka R 2020 Biomed. Opt. Express 11 3830

    [2]

    Bo E, Luo Y M, Chen S, Liu X Y, Wang N S, Ge X, Wang X H, Chen S F, Chen S, Li J H, Liu L B 2017 Optica 4 701

    [3]

    Liu Y H, Qin T X, Wang Y C, Kang X W, Liu J, Wu J C, Cao L C 2023 Acta Phys. Sin. 72 084205(in Chinese) [刘有海、秦天翔、王英策、亢兴旺、刘君、吴佳琛、曹良才2023 72 084205]

    [4]

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208(in Chinese) [王华英、张志会、廖薇、宋修法、郭中甲、刘飞飞2012 61 044208]

    [5]

    Wei Q Y, Ni J L, Li L, Zhang Y Q, Yuan X C, Min C J 2023 Acta Phys. Sin. 72 178701(in Chinese) [韦芊屹、倪洁蕾、李灵、张聿全、袁小聪、闵长俊2023 72 178701]

    [6]

    Adachi S, Ishii H, Kanai T, Ishii N, Kosuge A, Watanabe S 2007 Opt. Lett. 32 2487

    [7]

    Cheng J, Liu C S, Shang S, Liu D, Perrie W, Dearden G, Watkins K 2013 Opt. Laser Technol. 46 88

    [8]

    Guo B S, Sun J Y, Lu Y F, Jiang L 2019 Int. J. Extreme Manuf. 1 032004032004

    [9]

    Gattass R R, Mazur E 2008 Nat. Photonics 2 219

    [10]

    Kravtsov V, Ulbricht R, Atkin J M, Raschke M B 2016 Nat. Nanotechnol. 11 459

    [11]

    Kumar R S S, Rao S V, Giribabu L, Rao D N 2007 Chem. Phys. Lett. 447 274

    [12]

    Bindra K S, Kar A K 2001 Appl. Phys. Lett. 79 3761

    [13]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [14]

    Tang H C, Men T, Liu X L, Hu Y D, Su J Q, Zuo Y L, Li P, Liang J Y, Downer M C, Li Z Y 2022 Light Sci. Appl. 11 244244

    [15]

    Castro-Marín P, Castro-Olvera G, Garduño-Mejia J, Rosete-Aguilar M, Bruce N C, Reid D T, Rodríguez-Herrera O G 2017 Opt. Express 25 14473

    [16]

    Ramírez-Guerra C, Rosete-Aguilar M, Garduño-Mejía J 2020 Appl. Opt. 59 1519

    [17]

    Castro-Marín P, Castro-Olvera G, Ruíz C, Garduño-Mejía J, Rosete-Aguilar M, Bruce N C 2017 AIP Adv. 7 105014

    [18]

    Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W 2019 Light Sci. Appl. 8 6767

    [19]

    Flores A, Wang M R, Yang J J 2004 Appl. Opt. 43 5618

    [20]

    Wang Z W, Li Q, Yan F 2021 J. Phys. D. Appl. Phys. 54 085103085103

    [21]

    Vázquez-Villa A, Delgado-Atencio J A, Vázquez-Montiel S, Castro-Ramos J, Cunill-Rodríguez M 2015 Opt. Lett. 40 2842

    [22]

    Aydin T, Akgul Y S 2010 Opt. Express 18 14212

    [23]

    Banerji S, Meem M, Majumder A, Sensale-Rodriguez B, Menon R 2020 Optica 7 214

    [24]

    Moreno-Larios J A, Rosete-Aguilar M, Rodríguez-Herrera O G, Garduño-Mejía J 2020 Appl. Opt. 59 7247

    [25]

    Sheik-bahae M, Said A A, Wei T H, Wu Y Y, Hagan D J, Soileau M J, Stryland E W V 1990 Proc. SPIE 1148 41

    [26]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W 1990 IEEE J. Quantum Electron. 26 760

    [27]

    Yin M, Li H P, Tang S H, Ji W 2000 Appl. Phys. B-Lasers Opt. 70 587

  • [1] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究.  , doi: 10.7498/aps.69.20200397
    [2] 赵珂, 宋军, 张瀚. 给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响.  , doi: 10.7498/aps.68.20190471
    [3] 杨哲, 张祥, 肖思, 何军, 顾兵. 双光子激发ZnSe自由载流子超快动力学研究.  , doi: 10.7498/aps.64.177901
    [4] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面.  , doi: 10.7498/aps.64.124102
    [5] 武香莲, 赵珂, 贾海洪, 王富青. 以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性.  , doi: 10.7498/aps.64.233301
    [6] 贾克宁, 刘中波, 梁颖, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对VIC相关的双光子吸收的影响.  , doi: 10.7498/aps.61.064204
    [7] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深.  , doi: 10.7498/aps.61.044208
    [8] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱.  , doi: 10.7498/aps.59.7055
    [9] 苗泉, 赵鹏, 孙玉萍, 刘纪彩, 王传奎. 超短脉冲激光在DBASVP分子中传播时的双光子面积演化和光限幅效应.  , doi: 10.7498/aps.58.5455
    [10] 孙元红, 王传奎. 新型多共轭链有机分子双光子吸收特性的理论研究.  , doi: 10.7498/aps.58.5304
    [11] 孙玉萍, 刘纪彩, 王传奎. 含时电离对飞秒脉冲激光在强双光子吸收介质中传播特性和光限幅行为的影响.  , doi: 10.7498/aps.58.3934
    [12] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应.  , doi: 10.7498/aps.57.238
    [13] 吴文智, 郑植仁, 金钦汉, 闫玉禧, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的三阶光学非线性极化特性.  , doi: 10.7498/aps.57.1177
    [14] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究.  , doi: 10.7498/aps.56.2570
    [15] 赵 珂, 孙元红, 王传奎, 罗 毅, 张 献, 于晓强, 蒋民华. 1,4-二甲氧基-2,5-二乙烯基苯系列衍生物的双光子吸收截面.  , doi: 10.7498/aps.54.2662
    [16] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响.  , doi: 10.7498/aps.53.2112
    [17] 江 俊, 李 宁, 陈贵宾, 陆 卫, 王明凯, 杨学平, 吴 刚, 范耀辉, 李永贵, 袁先漳. FEL诱导半导体材料非线性光吸收.  , doi: 10.7498/aps.52.1403
    [18] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究.  , doi: 10.7498/aps.52.1929
    [19] 张衍亮, 江 丽, 钮月萍, 孙真荣, 丁良恩, 王祖赓. Na2中由一对耦合能级相干叠加导致的双光子吸收的干涉增强效应.  , doi: 10.7498/aps.52.345
    [20] 贾天卿, 陈 鸿, 吴 翔. 导带电子的光吸收及其对材料破坏过程的影响.  , doi: 10.7498/aps.49.1277
计量
  • 文章访问数:  184
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map