搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au(111)表面WS2成核控制的理论研究

胡艺山 袁清红

引用本文:
Citation:

Au(111)表面WS2成核控制的理论研究

胡艺山, 袁清红

Theoretical study on the nucleation control of WS2 on Au(111) surfaces

Hu Yi-Shan, Yuan Qing-Hong
PDF
HTML
导出引用
  • 二维二硫化钨(WS2)作为一种具有层依赖的电子和光电特性的半导体材料, 在光电器件领域展现出极具潜力的应用前景. 当前, 晶圆级单层WS2薄膜的制备是推动其在先进晶体管和集成电路中应用的关键挑战. 化学气相沉积(CVD)能够实现大尺寸、高质量的单层WS2薄膜合成, 但其生长过程的复杂性导致了WS2生长效率低, 质量参差不齐. 为指导实验上减少WS2晶界, 提高薄膜质量以增强其电子性能和机械稳定性, 本文基于第一性原理的理论计算, 深入探讨了WS2在CVD生长过程中的成核机制. 通过引入化学势这一变量, 分析了不同实验条件下WS2的生长能量曲线, 发现调整前驱体钨源和硫源的温度或压强能有效控制WS2的成核速率. 特别是当钨源温度为1250 K时, 成核速率达到最大, 而提高硫源温度或降低硫源压强则能降低成核速率, 从而提高单层WS2的结晶度和均匀性. 这些理论计算结果为实验中根据需求精确调整成核速率提供了坚实的理论依据, 并为如何通过优化实验参数来提高单层WS2薄膜的结晶度和均匀性提供了理论指导, 有望推动WS2材料在各类高性能电子器件中的应用发展, 对未来材料科学和工业应用具有重要意义.
    Two-dimensional tungsten disulfide (WS2), as a semiconductor material with unique layer-dependent electronic and optoelectronic characteristics, demonstrates a promising application prospect in the field of optoelectronic devices. The fabrication of wafer-scale monolayer WS2 films is currently a critical challenge that propels their application in advanced transistors and integrated circuits. Chemical vapor deposition (CVD) is a feasible technique for fabricating large-area, high-quality monolayer WS2 films, yet the complexity of its growth process results in low growth efficiency and inconsistent film quality of WS2. In order to guide experimental efforts to diminish grain boundaries in WS2, thereby improving film quality to enhance electronic performance and mechanical stability, this study investigates the nucleation mechanisms of WS2 during CVD growth through first-principles theoretical calculations. By considering chemical potential as a crucial variable, we analyze the growth energy curves of WS2 under diverse experimental conditions. Our findings demonstrate that modulating the temperature or pressure of the tungsten and sulfur precursors can decisively influence the nucleation rate of WS2. Notably, the nucleation rate reaches a peak at a tungsten source temperature of 1250 K, while an increase in sulfur source temperature or a decrease in pressure can suppress the nucleation rate, thereby enhancing the crystallinity and uniformity of monolayer WS2. These insights not only furnish a robust theoretical foundation for experimentally fine-tuning the nucleation rate as needed but also provide strategic guidance for optimizing experimental parameters to refine the crystallinity and uniformity of monolayer WS2 films. Such advancements are expected to accelerate the deployment of WS2 materials in a range of high-performance electronic devices, marking a significant stride in the field of materials science and industrial applications.
      通信作者: 袁清红, qhyuan@phy.ecnu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA1200801)和国家自然科学基金(批准号: 22173031)资助的课题.
      Corresponding author: Yuan Qing-Hong, qhyuan@phy.ecnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1200801) and the National Natural Science Foundation of China (Grant No. 22173031).
    [1]

    Zhao W J, Ghorannevis Z, Chu L Q, Toh M L, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [2]

    Ovchinnikov D, Allain A, Huang Y S, Dumcenco D, Kis A 2014 ACS Nano 8 8174Google Scholar

    [3]

    Ding D G, Wang S, Xia Y P, Li P, He D L, Zhang J Q, Zhao S W, Yu G H, Zheng Y H, Cheng Y, Xie M H, Ding F, Jin C H 2022 ACS Nano 16 17356Google Scholar

    [4]

    Falin A, Holwill M, Lü H F, Gan W, Cheng J, Zhang R, Qian D, Barnett M R, Santos E J G, Novoselov K S, Tao T, Wu X J, Lu H L 2021 ACS Nano 15 2600Google Scholar

    [5]

    陈蓉, 王远帆, 王熠欣, 梁前, 谢泉 2022 71 127301Google Scholar

    Chen R, Wang Y F, Wang Y X, Liang Q, Xie Q 2022 Acta Phys. Sin. 71 127301Google Scholar

    [6]

    Mahler B, Hoepfner V, Liao K, Ozin G A 2014 J. Am. Chem. Soc. 136 14121Google Scholar

    [7]

    Kuc A, Zibouche N, Heine T 2011 Phy. Rev. B 83 245213Google Scholar

    [8]

    Wu J M, Li L H, Zheng W H, Zheng B Y, Xu Z Y, Zhang X H, Zhu C G, Wu K, Zhang C, Jiang Y 2022 Chin. Phys. B 31 057803Google Scholar

    [9]

    Huo N J, Yang S X, Wei Z M, Li S S, Xia J B, Li J B 2014 Sci. Rep. 4 5209Google Scholar

    [10]

    Chernikov A, Ruppert C, Hill H M, Rigosi A F, Heinz T F 2015 Nat. Photonics 9 466Google Scholar

    [11]

    Bin Rafiq M K S, Amin N, Alharbi H F, Luqman M, Ayob A, Alharthi Y S, Alharthi N H, Bais B, Akhtaruzzaman M 2020 Sci. Rep. 10 771Google Scholar

    [12]

    Han L X, Yang M, Wen P T, Gao W, Huo N J, Li J B 2021 Nanoscale. Adv. 3 2657Google Scholar

    [13]

    Pawbake A S, Waykar R G, Late D J, Jadkar S R 2016 ACS Appl. Mater. Interfaces 8 3359Google Scholar

    [14]

    Wang H C, Lin Y H, Liu X, Deng X H, Ben J W, Yu W J, Zhu D L, Liu X K 2023 Chin. Phys. B 32 018504Google Scholar

    [15]

    Chakraborty B, Gu J, Khatoniar M, Menon V M 2019 2019 Conference on Lasers and Electro-Optics IEEE Munich, Germany, June 23–27, 2019

    [16]

    Xu Z Q, Zhang Y P, Lin S H, Zheng C X, Zhong Y L, Xia X, Li Z P, Sophia P J, Fuhrer M S, Cheng Y B, Bao Q L 2015 ACS Nano 9 6178Google Scholar

    [17]

    Wan Y, Li E, Yu Z H, Huang J K, Li M Y, Chou A S, Lee Y T, Lee C J, Hsu H C, Zhan Q, Aljarb A, Fu J H, Chiu S P, Wang X R, Lin J J, Chiu S P, Chang W H, Wang H, Shi Y, Lin N, Cheng Y C, Tung V, Li L J 2022 Nat. Commun. 13 4149Google Scholar

    [18]

    Zribi R, Crispi S, Giusi D, Zhukush M, Ampelli C, Shen C, Raza M H, Pinna N, Neri G 2024 ACS Appl. Nano Mater. 7 4998Google Scholar

    [19]

    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A 2012 Nat. Nanotechnol. 8 100Google Scholar

    [20]

    Xu Z H, Lü Y F, Li J Z, Huang F, Nie P B, Zhang S W, Zhao S C, Zhao S X, Wei G D 2019 RSC Adv. 9 29628Google Scholar

    [21]

    Chubarov M, Choudhury T H, Hickey D R, Bachu S, Zhang T, Sebastian A, Bansal A, Zhu H, Trainor N, Das S, Terrones M, Alem N, Redwing J M 2021 ACS Nano 15 2532 Google Scholar

    [22]

    Loh T A J, Chua D H C, Wee A T S 2015 Sci. Rep. 5 18116Google Scholar

    [23]

    Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L, Xu S J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar

    [24]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 70 026802Google Scholar

    Wang S, Wang W H, Lü J P, Ni Z H 2021 Acta Phys. Sin. 70 026802Google Scholar

    [25]

    Meng L, Hu S, Yan W, Feng J, Li H, Yan X H 2020 Chem. Phys. Lett. 739 136945Google Scholar

    [26]

    Rong Y M, Fan Y, Leen Koh A, Robertson A W, He K, Wang S S, Tan H J, Sinclair R, Warner J H 2014 Nanoscale 6 12096Google Scholar

    [27]

    Richey N E, Haines C, Tami J L, McElwee-White L 2017 Chem. Commun. 53 7728Google Scholar

    [28]

    Xie Y, Ma X H, Wang Z, Nan T, Wu R X, Zhang P, Wang H L, Wang Y B, Zhan Y J, Hao Y 2018 MRS Adv. 3 365Google Scholar

    [29]

    Cong C X, Shang J Z, Wu X, Cao B C, Peimyoo N, Qiu C Y, Sun L T, Yu T 2013 Adv. Opt. Mater. 2 131Google Scholar

    [30]

    Gao Y, Liu Z B, Sun D M, Huang L, Ma L P, Yin L C, Ma T, Zhang Z Y, Ma X L, Peng L M, Cheng H M, Ren W C 2015 Nat. Commun. 6 8569Google Scholar

    [31]

    Zhang G X, Wang C X, Yan B, Ning B, Zhao Y, Zhou D H, Shi X, Chen S K, Shen J, Xiao Z Y, Zhao H Q 2022 J. Mater. Sci. Mater. Electron. 33 22560Google Scholar

    [32]

    Liu P, Li X X, Ai H X, Shen Y, Deng J, Ding X L, Wang W J 2023 J. Phys. Chem. C 127 21204Google Scholar

    [33]

    Huang L Y, Li M Y, Liew S L, Lin S C, Chou A S, Hsu M C, Hsu C H, Lin Y T, Mao P S, Hou D H, Liu W C, Wu C I, Chang W H, Wang H, Li L J, Wei K H 2023 ACS Mater. Lett. 5 1760Google Scholar

    [34]

    Yang W H, Mu Y B, Chen X S, Jin N J, Song J H, Chen J J, Dong L X, Liu C R, Xuan W P, Zhou C J, Cong C X, Shang J S, He S L, Wang G F, Li J 2023 Discov. Nano 18 13Google Scholar

    [35]

    Wang J H, Xu X Z, Cheng T, Gu L H, Qiao R X, Liang Z h, Ding D, Hong H, Zheng P M, Zhang Z B, Zhang Z H, Zhang S, Cui G L, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y G, Xue G D, Fang X J, Tian J P, Wu M H, Guo Y, Yao Z X, Jiao Q Z, Liu L, Gao P, Li Q Y, Yang R, Zhang G Y, Tang Z X, Yu D P, Wang E, Lu J M, Zhao Y, Wu S W, Ding F, Liu K H 2022 Nat. Nanotechnol. 17 33Google Scholar

    [36]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [37]

    Qiu H, Xu T, Wang Z, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642Google Scholar

    [38]

    Su L Q, Yu Y F, Cao L Y, Zhang Y 2023 Sci. China Mater. 66 3949Google Scholar

    [39]

    Thangaraja A, Shinde S M, Kalita G, Tanemura M 2015 Mater. Lett. 156 156Google Scholar

    [40]

    Chen J, Shao K, Yang W H, Tang W Q, Zhou J P, He Q M, Wu Y P, Zhang C M, Li X, Yang X, Wu Z M, Kang J Y 2019 ACS Appl. Mater. Interfaces 11 19381Google Scholar

    [41]

    Li C, Yamaguchi Y, Kaneko T, Kato T 2017 Appl. Phys. Express 10 075201Google Scholar

    [42]

    Lan F F, Yang R X, Hao S, Zhou B Z, Sun K W, Cheng H J, Zhang S, Li L J, Jin L 2020 Appl. Surf. Sci. 504 144378Google Scholar

    [43]

    Zhang Q H, Lu J F, Wang Z Y, Dai Z G, Zhang Y P, Huang F Z, Bao Q L, Duan W H, Fuhrer M S, Zheng C X 2018 Adv. Opt. Mater. 6 1701347Google Scholar

    [44]

    Kang K N, Godin K, Yang E H 2015 Sci. Rep. 5 13205Google Scholar

    [45]

    Shi B, Zhou D M, Qiu R S, Bahri M, Kong X D, Zhao H Q, Tlili C, Wang D Q 2020 Appl. Surf. Sci. 533 147479Google Scholar

    [46]

    Yin H, Zhang X D, Lu J W, Geng X M, Wan Y F, Wu M Z, Yang P 2019 J. Mater. Sci 55 990Google Scholar

    [47]

    Li K L, Wang W J 2020 J. Cryst. Growth 540 125645Google Scholar

    [48]

    Dendzik M, Michiardi M, Sanders C, Bianchi M, Miwa J A, Grønborg S S, Lauritsen J V, Bruix A, Hammer B, Hofmann P 2015 Phy. Rev. B 92 245442Google Scholar

    [49]

    Fuchtbauer H G, Tuxen A K, Moses P G, Topsoe H, Besenbacher F, Lauritsen J V 2013 Phys Chem. Chem. Phys. 15 15971Google Scholar

    [50]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci 6 15Google Scholar

    [51]

    Kresse G, Furthmuller J 1996 Phy. Rev. B 54 11169Google Scholar

    [52]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [53]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [54]

    Blöchl P E 1994 Phy. Rev. B 50 17953Google Scholar

    [55]

    Yue Y C, Chen J C, Zhang Y, Ding S, Zhao F L, Wang Y, Zhang D H, Li R J, Dong H L, Hu W P, Feng Y, Feng W 2018 ACS Appl. Mater. Interfaces 10 22435Google Scholar

    [56]

    Gutiérrez H R, Perea-López N, Elías A L, Berkdemir A, Wang B, Lü R, López-Urías F, Crespi V H, Terrones H, Terrones M 2012 Nano Lett. 13 3447Google Scholar

    [57]

    Misawa M, Tiwari S, Hong S, Krishnamoorthy A, Shimojo F, Kalia R K, Nakano A, Vashishta P 2017 J. Phys. Chem. Lett. 8 6206Google Scholar

    [58]

    Gao J F, Yuan Q H, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 17695Google Scholar

    [59]

    Zhang W H, Wu P, Li Z Y, Yang J L 2011 J. Phys. Chem. C 115 17782Google Scholar

    [60]

    Li X B, Zhang J B, Zhou N, Xu H, Yang R S 2021 ACS Appl. Electron. Mater. 3 5138Google Scholar

    [61]

    Gao J F, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [62]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [63]

    Lan S G, Zhang Z X, Hong Y K, She Y H, Pan B J, Xu Y, Wang P J 2023 Adv. Mater. Interfaces 10 2300713Google Scholar

    [64]

    刘兆肃, 刘国濠, 叶晓宜, 张仕源, 郑晓婷, 劳媚媚, 徐海涛 2021 材料研究与应用 15 486Google Scholar

    Liu Z S, Liu G H, Ye X Y, Zhang S Y, Zheng X T, Lao M M, Xu H T 2021 Mater. Res. Appl. 15 486Google Scholar

    [65]

    Babu Shinde N, Deul Ryu B, Hong C H, Francis B, Chandramohan S, Kumar Eswaran S 2021 Appl. Surf. Sci. 568 150908Google Scholar

  • 图 1  (a)以W或S边终结的三角形WS2团簇的形成能(Ef)与其尺寸大小(N)的关系, $ {E_{\text{f}}} = {E_{{\text{tot}}}} - {N_{\text{W}}} \cdot {\mu _{{\text{W(ref)}}}} - {N_{\text{S}}} \cdot {\mu _{{\text{S(ref)}}}} $, 其中$ {E_{{\text{tot}}}} $为WS2整体能量, $ {N_{\text{W}}} $和$ {N_{\text{S}}} $分别为W, S原子数, $ {\mu _{{\text{W(ref)}}}} $, $ {\mu _{{\text{S(ref)}}}} $分别为W, S前驱体的参考化学势. (b), (c) Au(111)表面S边终结的WS2团簇的形成能及其线性拟合

    Fig. 1.  (a) Forming energy (Ef) versus size (N) of triangular WS2 clusters terminated with W or S edge, $ {E_{\text{f}}} = {E_{{\text{tot}}}} - {N_{\text{W}}} \cdot {\mu _{{\text{W(ref)}}}} - $$ {N_{\text{S}}} \cdot {\mu _{{\text{S(ref)}}}} $, where $ {E_{{\text{tot}}}} $ is the overall energy of WS2, $ {N_{\text{W}}} $ and $ {N_{\text{S}}} $ are the number of atoms W and S respectively, $ {\mu _{{\text{W(ref)}}}} $ and $ {\mu _{{\text{S(ref)}}}} $ are the reference chemical potential of W and S precursors respectively. (b), (c) Formation energy and linear fitting of WS2 clusters terminated with S edge on Au(111) surface.

    图 2  前驱体(a)钨源、(b)硫源化学势随温度的变化; (c) 500 K的硫源化学势随硫源压强的变化

    Fig. 2.  Changes of chemical potential of precursor (a) tungsten source and (b) sulfur source with temperature; (c) chemical potential of sulfur source changes with the pressure of sulfur source at 500 K.

    图 3  不同钨源温度(a)、硫源温度(b)以及硫源压强(c)条件下Au(111)表面WS2的吉布斯自由能与团簇大小的关系

    Fig. 3.  Gibbs free energy versus cluster size of WS2 on Au(111) surface under different (a) tungsten source temperature, (b) sulfur source temperature and (c) sulfur source pressure.

    图 4  Au(111)表面 WS2团簇的成核速率与不同实验条件的关系 (a) T(W); (b) T(S); (c) P(S)/P0. 纵坐标为log10刻度类型, 红色虚线标注为T(W) = 1300 K, T(S) = 500 K, P(S) = 763.10 Pa实验条件下WS2团簇的成核速率

    Fig. 4.  Nucleation rates of WS2 clusters on Au(111) surface under different experimental conditions: (a) T(W); (b) T(S); (c) P(S)/P0. Scale of the vertical axis in the graph is non-linear and is of the log10 type, and the red dotted lines indicate the nucleation rates of WS2 clusters under experimental conditions of T(W) = 1300 K, T(S) = 500 K and P(S) = 763.10 Pa.

    Baidu
  • [1]

    Zhao W J, Ghorannevis Z, Chu L Q, Toh M L, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [2]

    Ovchinnikov D, Allain A, Huang Y S, Dumcenco D, Kis A 2014 ACS Nano 8 8174Google Scholar

    [3]

    Ding D G, Wang S, Xia Y P, Li P, He D L, Zhang J Q, Zhao S W, Yu G H, Zheng Y H, Cheng Y, Xie M H, Ding F, Jin C H 2022 ACS Nano 16 17356Google Scholar

    [4]

    Falin A, Holwill M, Lü H F, Gan W, Cheng J, Zhang R, Qian D, Barnett M R, Santos E J G, Novoselov K S, Tao T, Wu X J, Lu H L 2021 ACS Nano 15 2600Google Scholar

    [5]

    陈蓉, 王远帆, 王熠欣, 梁前, 谢泉 2022 71 127301Google Scholar

    Chen R, Wang Y F, Wang Y X, Liang Q, Xie Q 2022 Acta Phys. Sin. 71 127301Google Scholar

    [6]

    Mahler B, Hoepfner V, Liao K, Ozin G A 2014 J. Am. Chem. Soc. 136 14121Google Scholar

    [7]

    Kuc A, Zibouche N, Heine T 2011 Phy. Rev. B 83 245213Google Scholar

    [8]

    Wu J M, Li L H, Zheng W H, Zheng B Y, Xu Z Y, Zhang X H, Zhu C G, Wu K, Zhang C, Jiang Y 2022 Chin. Phys. B 31 057803Google Scholar

    [9]

    Huo N J, Yang S X, Wei Z M, Li S S, Xia J B, Li J B 2014 Sci. Rep. 4 5209Google Scholar

    [10]

    Chernikov A, Ruppert C, Hill H M, Rigosi A F, Heinz T F 2015 Nat. Photonics 9 466Google Scholar

    [11]

    Bin Rafiq M K S, Amin N, Alharbi H F, Luqman M, Ayob A, Alharthi Y S, Alharthi N H, Bais B, Akhtaruzzaman M 2020 Sci. Rep. 10 771Google Scholar

    [12]

    Han L X, Yang M, Wen P T, Gao W, Huo N J, Li J B 2021 Nanoscale. Adv. 3 2657Google Scholar

    [13]

    Pawbake A S, Waykar R G, Late D J, Jadkar S R 2016 ACS Appl. Mater. Interfaces 8 3359Google Scholar

    [14]

    Wang H C, Lin Y H, Liu X, Deng X H, Ben J W, Yu W J, Zhu D L, Liu X K 2023 Chin. Phys. B 32 018504Google Scholar

    [15]

    Chakraborty B, Gu J, Khatoniar M, Menon V M 2019 2019 Conference on Lasers and Electro-Optics IEEE Munich, Germany, June 23–27, 2019

    [16]

    Xu Z Q, Zhang Y P, Lin S H, Zheng C X, Zhong Y L, Xia X, Li Z P, Sophia P J, Fuhrer M S, Cheng Y B, Bao Q L 2015 ACS Nano 9 6178Google Scholar

    [17]

    Wan Y, Li E, Yu Z H, Huang J K, Li M Y, Chou A S, Lee Y T, Lee C J, Hsu H C, Zhan Q, Aljarb A, Fu J H, Chiu S P, Wang X R, Lin J J, Chiu S P, Chang W H, Wang H, Shi Y, Lin N, Cheng Y C, Tung V, Li L J 2022 Nat. Commun. 13 4149Google Scholar

    [18]

    Zribi R, Crispi S, Giusi D, Zhukush M, Ampelli C, Shen C, Raza M H, Pinna N, Neri G 2024 ACS Appl. Nano Mater. 7 4998Google Scholar

    [19]

    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A 2012 Nat. Nanotechnol. 8 100Google Scholar

    [20]

    Xu Z H, Lü Y F, Li J Z, Huang F, Nie P B, Zhang S W, Zhao S C, Zhao S X, Wei G D 2019 RSC Adv. 9 29628Google Scholar

    [21]

    Chubarov M, Choudhury T H, Hickey D R, Bachu S, Zhang T, Sebastian A, Bansal A, Zhu H, Trainor N, Das S, Terrones M, Alem N, Redwing J M 2021 ACS Nano 15 2532 Google Scholar

    [22]

    Loh T A J, Chua D H C, Wee A T S 2015 Sci. Rep. 5 18116Google Scholar

    [23]

    Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L, Xu S J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar

    [24]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 70 026802Google Scholar

    Wang S, Wang W H, Lü J P, Ni Z H 2021 Acta Phys. Sin. 70 026802Google Scholar

    [25]

    Meng L, Hu S, Yan W, Feng J, Li H, Yan X H 2020 Chem. Phys. Lett. 739 136945Google Scholar

    [26]

    Rong Y M, Fan Y, Leen Koh A, Robertson A W, He K, Wang S S, Tan H J, Sinclair R, Warner J H 2014 Nanoscale 6 12096Google Scholar

    [27]

    Richey N E, Haines C, Tami J L, McElwee-White L 2017 Chem. Commun. 53 7728Google Scholar

    [28]

    Xie Y, Ma X H, Wang Z, Nan T, Wu R X, Zhang P, Wang H L, Wang Y B, Zhan Y J, Hao Y 2018 MRS Adv. 3 365Google Scholar

    [29]

    Cong C X, Shang J Z, Wu X, Cao B C, Peimyoo N, Qiu C Y, Sun L T, Yu T 2013 Adv. Opt. Mater. 2 131Google Scholar

    [30]

    Gao Y, Liu Z B, Sun D M, Huang L, Ma L P, Yin L C, Ma T, Zhang Z Y, Ma X L, Peng L M, Cheng H M, Ren W C 2015 Nat. Commun. 6 8569Google Scholar

    [31]

    Zhang G X, Wang C X, Yan B, Ning B, Zhao Y, Zhou D H, Shi X, Chen S K, Shen J, Xiao Z Y, Zhao H Q 2022 J. Mater. Sci. Mater. Electron. 33 22560Google Scholar

    [32]

    Liu P, Li X X, Ai H X, Shen Y, Deng J, Ding X L, Wang W J 2023 J. Phys. Chem. C 127 21204Google Scholar

    [33]

    Huang L Y, Li M Y, Liew S L, Lin S C, Chou A S, Hsu M C, Hsu C H, Lin Y T, Mao P S, Hou D H, Liu W C, Wu C I, Chang W H, Wang H, Li L J, Wei K H 2023 ACS Mater. Lett. 5 1760Google Scholar

    [34]

    Yang W H, Mu Y B, Chen X S, Jin N J, Song J H, Chen J J, Dong L X, Liu C R, Xuan W P, Zhou C J, Cong C X, Shang J S, He S L, Wang G F, Li J 2023 Discov. Nano 18 13Google Scholar

    [35]

    Wang J H, Xu X Z, Cheng T, Gu L H, Qiao R X, Liang Z h, Ding D, Hong H, Zheng P M, Zhang Z B, Zhang Z H, Zhang S, Cui G L, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y G, Xue G D, Fang X J, Tian J P, Wu M H, Guo Y, Yao Z X, Jiao Q Z, Liu L, Gao P, Li Q Y, Yang R, Zhang G Y, Tang Z X, Yu D P, Wang E, Lu J M, Zhao Y, Wu S W, Ding F, Liu K H 2022 Nat. Nanotechnol. 17 33Google Scholar

    [36]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [37]

    Qiu H, Xu T, Wang Z, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642Google Scholar

    [38]

    Su L Q, Yu Y F, Cao L Y, Zhang Y 2023 Sci. China Mater. 66 3949Google Scholar

    [39]

    Thangaraja A, Shinde S M, Kalita G, Tanemura M 2015 Mater. Lett. 156 156Google Scholar

    [40]

    Chen J, Shao K, Yang W H, Tang W Q, Zhou J P, He Q M, Wu Y P, Zhang C M, Li X, Yang X, Wu Z M, Kang J Y 2019 ACS Appl. Mater. Interfaces 11 19381Google Scholar

    [41]

    Li C, Yamaguchi Y, Kaneko T, Kato T 2017 Appl. Phys. Express 10 075201Google Scholar

    [42]

    Lan F F, Yang R X, Hao S, Zhou B Z, Sun K W, Cheng H J, Zhang S, Li L J, Jin L 2020 Appl. Surf. Sci. 504 144378Google Scholar

    [43]

    Zhang Q H, Lu J F, Wang Z Y, Dai Z G, Zhang Y P, Huang F Z, Bao Q L, Duan W H, Fuhrer M S, Zheng C X 2018 Adv. Opt. Mater. 6 1701347Google Scholar

    [44]

    Kang K N, Godin K, Yang E H 2015 Sci. Rep. 5 13205Google Scholar

    [45]

    Shi B, Zhou D M, Qiu R S, Bahri M, Kong X D, Zhao H Q, Tlili C, Wang D Q 2020 Appl. Surf. Sci. 533 147479Google Scholar

    [46]

    Yin H, Zhang X D, Lu J W, Geng X M, Wan Y F, Wu M Z, Yang P 2019 J. Mater. Sci 55 990Google Scholar

    [47]

    Li K L, Wang W J 2020 J. Cryst. Growth 540 125645Google Scholar

    [48]

    Dendzik M, Michiardi M, Sanders C, Bianchi M, Miwa J A, Grønborg S S, Lauritsen J V, Bruix A, Hammer B, Hofmann P 2015 Phy. Rev. B 92 245442Google Scholar

    [49]

    Fuchtbauer H G, Tuxen A K, Moses P G, Topsoe H, Besenbacher F, Lauritsen J V 2013 Phys Chem. Chem. Phys. 15 15971Google Scholar

    [50]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci 6 15Google Scholar

    [51]

    Kresse G, Furthmuller J 1996 Phy. Rev. B 54 11169Google Scholar

    [52]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [53]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [54]

    Blöchl P E 1994 Phy. Rev. B 50 17953Google Scholar

    [55]

    Yue Y C, Chen J C, Zhang Y, Ding S, Zhao F L, Wang Y, Zhang D H, Li R J, Dong H L, Hu W P, Feng Y, Feng W 2018 ACS Appl. Mater. Interfaces 10 22435Google Scholar

    [56]

    Gutiérrez H R, Perea-López N, Elías A L, Berkdemir A, Wang B, Lü R, López-Urías F, Crespi V H, Terrones H, Terrones M 2012 Nano Lett. 13 3447Google Scholar

    [57]

    Misawa M, Tiwari S, Hong S, Krishnamoorthy A, Shimojo F, Kalia R K, Nakano A, Vashishta P 2017 J. Phys. Chem. Lett. 8 6206Google Scholar

    [58]

    Gao J F, Yuan Q H, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 17695Google Scholar

    [59]

    Zhang W H, Wu P, Li Z Y, Yang J L 2011 J. Phys. Chem. C 115 17782Google Scholar

    [60]

    Li X B, Zhang J B, Zhou N, Xu H, Yang R S 2021 ACS Appl. Electron. Mater. 3 5138Google Scholar

    [61]

    Gao J F, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [62]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [63]

    Lan S G, Zhang Z X, Hong Y K, She Y H, Pan B J, Xu Y, Wang P J 2023 Adv. Mater. Interfaces 10 2300713Google Scholar

    [64]

    刘兆肃, 刘国濠, 叶晓宜, 张仕源, 郑晓婷, 劳媚媚, 徐海涛 2021 材料研究与应用 15 486Google Scholar

    Liu Z S, Liu G H, Ye X Y, Zhang S Y, Zheng X T, Lao M M, Xu H T 2021 Mater. Res. Appl. 15 486Google Scholar

    [65]

    Babu Shinde N, Deul Ryu B, Hong C H, Francis B, Chandramohan S, Kumar Eswaran S 2021 Appl. Surf. Sci. 568 150908Google Scholar

  • [1] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [3] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结.  , 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [4] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用.  , 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [5] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究.  , 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [6] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究.  , 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [7] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [8] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制.  , 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [9] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [10] 张薇, 陈凯彬, 陈震东. Cr二维单层薄片中Jahn-Teller效应的第一性原理研究.  , 2018, 67(23): 237301. doi: 10.7498/aps.67.20181669
    [11] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼.  , 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [12] 刘聪, 汪建华, 翁俊. 高质量高取向(100)面金刚石膜的可控性生长.  , 2015, 64(2): 028101. doi: 10.7498/aps.64.028101
    [13] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究.  , 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [14] 丁航晨, 施思齐, 姜平, 唐为华. BiFeO3 结构性质与相转变的第一性原理研究.  , 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [15] 谷锦华, 丁艳丽, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 椭圆偏振技术研究VHF-PECVD高速沉积微晶硅薄膜的异常标度行为.  , 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [16] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [17] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究.  , 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [18] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长.  , 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [19] 谷锦华, 周玉琴, 朱美芳, 李国华, 丁 琨, 周炳卿, 刘丰珍, 刘金龙, 张群芳. 低温制备微晶硅薄膜生长机制的研究.  , 2005, 54(4): 1890-1894. doi: 10.7498/aps.54.1890
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱.  , 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  1605
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-23
  • 修回日期:  2024-04-16
  • 上网日期:  2024-05-24
  • 刊出日期:  2024-07-05

/

返回文章
返回
Baidu
map