-
应用微波等离子体化学气相沉积技术, 在低气压下对(100)晶面金刚石膜的表面形貌、质量、取向和生长率进行了可控性生长研究. 结果表明: 基片温度与甲烷浓度对(100)晶面金刚石膜的生长存在耦合规律. 为了获得表面形貌相似的(100)晶面金刚石膜, 在沉积过程中, 增加碳源浓度的同时需要同时升高基片温度; 当甲烷浓度为3.0%, 基片温度从740 ℃上升至1100 ℃ 的过程中, 金刚石膜的晶面取向变化可分为五个阶段, 其中当基片温度在860 ℃至930 ℃时, 很适合高取向(100)晶面金刚石膜生长; 另外, 金刚石膜的质量和生长速率分别与基片温度和甲烷浓度成正比. 为了获得高质量高取向(100)晶面金刚石膜, 应当选择合适的基片温度和甲烷浓度.The high-quality highly (100) oriented diamond films each with controllable surface morphology, quality, orientation, and growth rate are prepared at low pressure by microwave plasma chemical vapor deposition. The results show that there is a coupled effect between substrate temperature and methane concentration on the growth of (100) oriented diamond films. The substrate temperature should be increased with increasing the methane concentration in order to obtain similar surface morphologies. When the methane concentration is 3.0%, the results indicate that there are five states for the orientation change with the substrate temperature increasing from 740 ℃ to 1100 ℃, and the diamond films with (100) orientation can be deposited at the substrate temperatures ranging from 860 ℃ to 930 ℃. Moreover, the quality and growth rate of each of (100) oriented diamond films are proportional to the substrate temperature and methane concentration, respectively. In order to obtain the high-quality highly (100) oriented diamond films, the substrate temperature and methane concentration should be both appropriate.
-
Keywords:
- diamond film /
- chemical vapor deposition /
- orientation /
- quality
[1] Wu J, Ma Z B, Shen W L, Yan L, Pan X, Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese) [吴俊, 马志斌, 沈武林, 严磊, 潘鑫, 汪建华 2013 62 075202]
[2] Liu S, Liu J L, Li C M, Guo J C, Chen L X, Wei J J, Hei L F, Lu F X 2013 Carbon 65 365
[3] Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107
[4] Su Q F, Xia Y B, Wang L J, Zhang M L, Lou Y Y, Gu B B, Shi W M 2005 Chin. J. Semicond. 26 947 (in Chinese) [苏青峰, 夏义本, 王林军, 张明龙, 楼燕燕, 顾蓓蓓, 史伟民 2005 半导体学报 26 947]
[5] Tang C J, Pereira S M S, Fernandes A J S, Neves A J, Gracio J, Bdikin I K, Soares M R, Fu L S, Gu L P, Kholkin A L, Carmo M C 2009 J. Cryst. Growth 311 2258
[6] Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756 (in Chinese) [李灿华, 廖源, 常超, 王冠中, 方容川 2000 49 1756]
[7] Weng J, Wang J H, Dai S Y, Xiong L W, Man W D, Liu F 2013 Appl. Surf. Sci. 276 529
[8] Chen H, Wang J H, Weng J, Sun Q 2013 Cemented Carbide 30 57 (in Chinese) [陈辉, 汪建华, 翁俊, 孙祁 2013 硬质合金 30 57]
[9] Paritosh, Srolovitz D J, Battaile C C, Li X, Butler J E 1999 Acta Mater. 47 2269
[10] Wang B, Ran J G, Gou L 2004 Sichuan Daxue Xuebao 36 57 (in Chinese) [王兵, 冉均国, 苟立 2004 四川大学学报 36 57]
[11] Sun Q, Wang J H, Weng J, Luo M 2013 Cemented Carbide 30 8 (in Chinese) [孙祁, 汪建华, 翁俊, 罗曼 2013 硬质合金 30 8]
[12] Tang W, Zhu C, Yao W, Wang Q, Li F, Lu F 2003 Thin Solid Films 429 63
[13] Weng J, Xiong L W, Wang J H, Dai S Y, Man W D, Liu F 2012 Diamond Relat. Mater. 30 15
[14] Das D, Singh R N 2007 Int. Mater. Rev. 52 29
[15] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 51 1870]
[16] Zheng Q K, Wang L J, Shi L Y 2013 Surf. Coat. Tech. 228 S379
[17] Zhang L, Ma G J, Lin G Q, Ma H, Han K C 2014 Chin. Phys. B 23 048102
[18] Lai W C, Wu Y S, Chang H C, Lee Y H 2010 Diamond Relat. Mater. 257 1729
[19] Kim Y K, Lee K Y, Lee J Y 1996 Thin Solid Films 272 64
[20] Tang C J, Grácio J, Fernandes A J S, Calisto H, Neves A J, Carmo M C 2009 Vacuum 83 340
[21] Janischowsky K, Stammler M, Ley L 1999 Diamond Relat. Mater. 8 179
[22] Zuo S S, Yaran M K, Grotjohn T A, Reinhard D K, Asmussen J 2008 Diamond Relat. Mater. 17 300
-
[1] Wu J, Ma Z B, Shen W L, Yan L, Pan X, Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese) [吴俊, 马志斌, 沈武林, 严磊, 潘鑫, 汪建华 2013 62 075202]
[2] Liu S, Liu J L, Li C M, Guo J C, Chen L X, Wei J J, Hei L F, Lu F X 2013 Carbon 65 365
[3] Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107
[4] Su Q F, Xia Y B, Wang L J, Zhang M L, Lou Y Y, Gu B B, Shi W M 2005 Chin. J. Semicond. 26 947 (in Chinese) [苏青峰, 夏义本, 王林军, 张明龙, 楼燕燕, 顾蓓蓓, 史伟民 2005 半导体学报 26 947]
[5] Tang C J, Pereira S M S, Fernandes A J S, Neves A J, Gracio J, Bdikin I K, Soares M R, Fu L S, Gu L P, Kholkin A L, Carmo M C 2009 J. Cryst. Growth 311 2258
[6] Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756 (in Chinese) [李灿华, 廖源, 常超, 王冠中, 方容川 2000 49 1756]
[7] Weng J, Wang J H, Dai S Y, Xiong L W, Man W D, Liu F 2013 Appl. Surf. Sci. 276 529
[8] Chen H, Wang J H, Weng J, Sun Q 2013 Cemented Carbide 30 57 (in Chinese) [陈辉, 汪建华, 翁俊, 孙祁 2013 硬质合金 30 57]
[9] Paritosh, Srolovitz D J, Battaile C C, Li X, Butler J E 1999 Acta Mater. 47 2269
[10] Wang B, Ran J G, Gou L 2004 Sichuan Daxue Xuebao 36 57 (in Chinese) [王兵, 冉均国, 苟立 2004 四川大学学报 36 57]
[11] Sun Q, Wang J H, Weng J, Luo M 2013 Cemented Carbide 30 8 (in Chinese) [孙祁, 汪建华, 翁俊, 罗曼 2013 硬质合金 30 8]
[12] Tang W, Zhu C, Yao W, Wang Q, Li F, Lu F 2003 Thin Solid Films 429 63
[13] Weng J, Xiong L W, Wang J H, Dai S Y, Man W D, Liu F 2012 Diamond Relat. Mater. 30 15
[14] Das D, Singh R N 2007 Int. Mater. Rev. 52 29
[15] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 51 1870]
[16] Zheng Q K, Wang L J, Shi L Y 2013 Surf. Coat. Tech. 228 S379
[17] Zhang L, Ma G J, Lin G Q, Ma H, Han K C 2014 Chin. Phys. B 23 048102
[18] Lai W C, Wu Y S, Chang H C, Lee Y H 2010 Diamond Relat. Mater. 257 1729
[19] Kim Y K, Lee K Y, Lee J Y 1996 Thin Solid Films 272 64
[20] Tang C J, Grácio J, Fernandes A J S, Calisto H, Neves A J, Carmo M C 2009 Vacuum 83 340
[21] Janischowsky K, Stammler M, Ley L 1999 Diamond Relat. Mater. 8 179
[22] Zuo S S, Yaran M K, Grotjohn T A, Reinhard D K, Asmussen J 2008 Diamond Relat. Mater. 17 300
计量
- 文章访问数: 7758
- PDF下载量: 459
- 被引次数: 0