搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高质量高取向(100)面金刚石膜的可控性生长

刘聪 汪建华 翁俊

引用本文:
Citation:

高质量高取向(100)面金刚石膜的可控性生长

刘聪, 汪建华, 翁俊

Preparation of the high-quality highly (100) oriented diamond films with controllable growth

Liu Cong, Wang Jian-Hua, Weng Jun
PDF
导出引用
  • 应用微波等离子体化学气相沉积技术, 在低气压下对(100)晶面金刚石膜的表面形貌、质量、取向和生长率进行了可控性生长研究. 结果表明: 基片温度与甲烷浓度对(100)晶面金刚石膜的生长存在耦合规律. 为了获得表面形貌相似的(100)晶面金刚石膜, 在沉积过程中, 增加碳源浓度的同时需要同时升高基片温度; 当甲烷浓度为3.0%, 基片温度从740 ℃上升至1100 ℃ 的过程中, 金刚石膜的晶面取向变化可分为五个阶段, 其中当基片温度在860 ℃至930 ℃时, 很适合高取向(100)晶面金刚石膜生长; 另外, 金刚石膜的质量和生长速率分别与基片温度和甲烷浓度成正比. 为了获得高质量高取向(100)晶面金刚石膜, 应当选择合适的基片温度和甲烷浓度.
    The high-quality highly (100) oriented diamond films each with controllable surface morphology, quality, orientation, and growth rate are prepared at low pressure by microwave plasma chemical vapor deposition. The results show that there is a coupled effect between substrate temperature and methane concentration on the growth of (100) oriented diamond films. The substrate temperature should be increased with increasing the methane concentration in order to obtain similar surface morphologies. When the methane concentration is 3.0%, the results indicate that there are five states for the orientation change with the substrate temperature increasing from 740 ℃ to 1100 ℃, and the diamond films with (100) orientation can be deposited at the substrate temperatures ranging from 860 ℃ to 930 ℃. Moreover, the quality and growth rate of each of (100) oriented diamond films are proportional to the substrate temperature and methane concentration, respectively. In order to obtain the high-quality highly (100) oriented diamond films, the substrate temperature and methane concentration should be both appropriate.
    • 基金项目: 国家自然科学基金(批准号: 11175137)和武汉工程大学研究基金(批准号: 11111051)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175137), and the the Research Fund of Wuhan Institute of Technology, China (Grant No. 11111051).
    [1]

    Wu J, Ma Z B, Shen W L, Yan L, Pan X, Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese) [吴俊, 马志斌, 沈武林, 严磊, 潘鑫, 汪建华 2013 62 075202]

    [2]

    Liu S, Liu J L, Li C M, Guo J C, Chen L X, Wei J J, Hei L F, Lu F X 2013 Carbon 65 365

    [3]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [4]

    Su Q F, Xia Y B, Wang L J, Zhang M L, Lou Y Y, Gu B B, Shi W M 2005 Chin. J. Semicond. 26 947 (in Chinese) [苏青峰, 夏义本, 王林军, 张明龙, 楼燕燕, 顾蓓蓓, 史伟民 2005 半导体学报 26 947]

    [5]

    Tang C J, Pereira S M S, Fernandes A J S, Neves A J, Gracio J, Bdikin I K, Soares M R, Fu L S, Gu L P, Kholkin A L, Carmo M C 2009 J. Cryst. Growth 311 2258

    [6]

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756 (in Chinese) [李灿华, 廖源, 常超, 王冠中, 方容川 2000 49 1756]

    [7]

    Weng J, Wang J H, Dai S Y, Xiong L W, Man W D, Liu F 2013 Appl. Surf. Sci. 276 529

    [8]

    Chen H, Wang J H, Weng J, Sun Q 2013 Cemented Carbide 30 57 (in Chinese) [陈辉, 汪建华, 翁俊, 孙祁 2013 硬质合金 30 57]

    [9]

    Paritosh, Srolovitz D J, Battaile C C, Li X, Butler J E 1999 Acta Mater. 47 2269

    [10]

    Wang B, Ran J G, Gou L 2004 Sichuan Daxue Xuebao 36 57 (in Chinese) [王兵, 冉均国, 苟立 2004 四川大学学报 36 57]

    [11]

    Sun Q, Wang J H, Weng J, Luo M 2013 Cemented Carbide 30 8 (in Chinese) [孙祁, 汪建华, 翁俊, 罗曼 2013 硬质合金 30 8]

    [12]

    Tang W, Zhu C, Yao W, Wang Q, Li F, Lu F 2003 Thin Solid Films 429 63

    [13]

    Weng J, Xiong L W, Wang J H, Dai S Y, Man W D, Liu F 2012 Diamond Relat. Mater. 30 15

    [14]

    Das D, Singh R N 2007 Int. Mater. Rev. 52 29

    [15]

    Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 51 1870]

    [16]

    Zheng Q K, Wang L J, Shi L Y 2013 Surf. Coat. Tech. 228 S379

    [17]

    Zhang L, Ma G J, Lin G Q, Ma H, Han K C 2014 Chin. Phys. B 23 048102

    [18]

    Lai W C, Wu Y S, Chang H C, Lee Y H 2010 Diamond Relat. Mater. 257 1729

    [19]

    Kim Y K, Lee K Y, Lee J Y 1996 Thin Solid Films 272 64

    [20]

    Tang C J, Grácio J, Fernandes A J S, Calisto H, Neves A J, Carmo M C 2009 Vacuum 83 340

    [21]

    Janischowsky K, Stammler M, Ley L 1999 Diamond Relat. Mater. 8 179

    [22]

    Zuo S S, Yaran M K, Grotjohn T A, Reinhard D K, Asmussen J 2008 Diamond Relat. Mater. 17 300

  • [1]

    Wu J, Ma Z B, Shen W L, Yan L, Pan X, Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese) [吴俊, 马志斌, 沈武林, 严磊, 潘鑫, 汪建华 2013 62 075202]

    [2]

    Liu S, Liu J L, Li C M, Guo J C, Chen L X, Wei J J, Hei L F, Lu F X 2013 Carbon 65 365

    [3]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [4]

    Su Q F, Xia Y B, Wang L J, Zhang M L, Lou Y Y, Gu B B, Shi W M 2005 Chin. J. Semicond. 26 947 (in Chinese) [苏青峰, 夏义本, 王林军, 张明龙, 楼燕燕, 顾蓓蓓, 史伟民 2005 半导体学报 26 947]

    [5]

    Tang C J, Pereira S M S, Fernandes A J S, Neves A J, Gracio J, Bdikin I K, Soares M R, Fu L S, Gu L P, Kholkin A L, Carmo M C 2009 J. Cryst. Growth 311 2258

    [6]

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756 (in Chinese) [李灿华, 廖源, 常超, 王冠中, 方容川 2000 49 1756]

    [7]

    Weng J, Wang J H, Dai S Y, Xiong L W, Man W D, Liu F 2013 Appl. Surf. Sci. 276 529

    [8]

    Chen H, Wang J H, Weng J, Sun Q 2013 Cemented Carbide 30 57 (in Chinese) [陈辉, 汪建华, 翁俊, 孙祁 2013 硬质合金 30 57]

    [9]

    Paritosh, Srolovitz D J, Battaile C C, Li X, Butler J E 1999 Acta Mater. 47 2269

    [10]

    Wang B, Ran J G, Gou L 2004 Sichuan Daxue Xuebao 36 57 (in Chinese) [王兵, 冉均国, 苟立 2004 四川大学学报 36 57]

    [11]

    Sun Q, Wang J H, Weng J, Luo M 2013 Cemented Carbide 30 8 (in Chinese) [孙祁, 汪建华, 翁俊, 罗曼 2013 硬质合金 30 8]

    [12]

    Tang W, Zhu C, Yao W, Wang Q, Li F, Lu F 2003 Thin Solid Films 429 63

    [13]

    Weng J, Xiong L W, Wang J H, Dai S Y, Man W D, Liu F 2012 Diamond Relat. Mater. 30 15

    [14]

    Das D, Singh R N 2007 Int. Mater. Rev. 52 29

    [15]

    Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 51 1870]

    [16]

    Zheng Q K, Wang L J, Shi L Y 2013 Surf. Coat. Tech. 228 S379

    [17]

    Zhang L, Ma G J, Lin G Q, Ma H, Han K C 2014 Chin. Phys. B 23 048102

    [18]

    Lai W C, Wu Y S, Chang H C, Lee Y H 2010 Diamond Relat. Mater. 257 1729

    [19]

    Kim Y K, Lee K Y, Lee J Y 1996 Thin Solid Films 272 64

    [20]

    Tang C J, Grácio J, Fernandes A J S, Calisto H, Neves A J, Carmo M C 2009 Vacuum 83 340

    [21]

    Janischowsky K, Stammler M, Ley L 1999 Diamond Relat. Mater. 8 179

    [22]

    Zuo S S, Yaran M K, Grotjohn T A, Reinhard D K, Asmussen J 2008 Diamond Relat. Mater. 17 300

  • [1] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应.  , 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [2] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究.  , 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [3] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [4] 耿传文, 夏禹豪, 赵洪阳, 付秋明, 马志斌. 单晶金刚石边缘表面倾斜角度对同质外延生长的影响.  , 2018, 67(24): 248101. doi: 10.7498/aps.67.20181537
    [5] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [6] 艾立强, 张相雄, 陈民, 熊大曦. 类金刚石薄膜在硅基底上的沉积及其热导率.  , 2016, 65(9): 096501. doi: 10.7498/aps.65.096501
    [7] 苏青峰, 刘长柱, 王林军, 夏义本. 不同织构CVD金刚石膜的Hall效应特性.  , 2015, 64(11): 117301. doi: 10.7498/aps.64.117301
    [8] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响.  , 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [9] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究.  , 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [10] 吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华. CVD金刚石中的氮对等离子体刻蚀的影响.  , 2013, 62(7): 075202. doi: 10.7498/aps.62.075202
    [11] 黄云霞, 徐淑武, 杨晓华. CO(X1∑+)分子静电/激光复合场取向.  , 2012, 61(24): 243701. doi: 10.7498/aps.61.243701
    [12] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究.  , 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [13] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长.  , 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [14] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究.  , 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [15] 李俊杰, 吴汉华, 龙北玉, 吕宪义, 胡超权, 金曾孙. N离子注入对金刚石膜场发射特性的影响.  , 2005, 54(3): 1447-1451. doi: 10.7498/aps.54.1447
    [16] 马丙现, 姚 宁, 杨仕娥, 鲁占灵, 樊志勤, 张兵临. 氢的强化刻蚀对金刚石薄膜品质的影响与sp2杂化碳原子的存在形态.  , 2004, 53(7): 2287-2291. doi: 10.7498/aps.53.2287
    [17] 刘存业, 刘 畅. CVD金刚石膜的结构分析.  , 2003, 52(6): 1479-1483. doi: 10.7498/aps.52.1479
    [18] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究.  , 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [19] 王必本, 王万录, 廖克俊, 肖金龙, 方亮. 离子的轰击对Si衬底上金刚石核附着力的影响.  , 2001, 50(2): 251-255. doi: 10.7498/aps.50.251
    [20] 孔春阳, 王万录, 廖克俊, 马勇, 王蜀霞, 方亮. p型半导体金刚石膜的磁阻效应.  , 2001, 50(8): 1616-1622. doi: 10.7498/aps.50.1616
计量
  • 文章访问数:  7758
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-16
  • 修回日期:  2014-09-10
  • 刊出日期:  2015-01-05

/

返回文章
返回
Baidu
map