-
Due to the excellent pyroelectric properties, ferroelectric ceramics containing lead element are widely used as sensitive materials in pyroelectric infrared detectors at present. The research and development of lead-free ferroelectric ceramics for this kind of detector has become a hot research spot in the areas of dielectric physics and materials in recent years. In this article, the recent research progress of the pyroelectric effect in series of important lead-free ferroelectric ceramic systems is reviewed, including barium titanate, sodium bismuth titanate, potassium sodium niobite, barium strontium niobite, etc. The methods of enhancing the pyroelectric effect are summarized, including doping modification, phase boundary design, process improvement, etc. Through comparative analysis of the relationship between pyroelectric properties and depolarization temperatures of different systems, it is concluded that bismuth sodium titanate based ceramics are the most potential lead-free materials in the future. The prospective research work of lead-free ferroelectric ceramics for infrared detection is also suggested.
[1] 钟维烈 2000 铁电体物理学 (北京: 科学出版社) 第17页
Zhong W L 2000 Ferroelectric Physics (Beijing: Science Press) p17 (in Chinese)
[2] 王永龄 2003 功能陶瓷性能与应用 (北京: 科学出版社) 第3页
Wang Y L 2003 Performance and Application of Functional Ceramics (Beijing: Science Press) p3 (in Chinese)
[3] 殷之文 2003 电介质物理学 (第二版) (北京: 科学出版社) 第715页
Yin Z W 2003 Dielectrics Physics (2nd Ed.) (Beijing: Science Press) p715 (in Chinese)
[4] Wentz J L, Kennedy L Z 1964 J. Appl. Phys. 35 1767
Google Scholar
[5] Liu S T, Kyonka J 1974 Ferroelectrics 7 167
Google Scholar
[6] Hardiman B, Reeves C P, Zeyfang R R 1976 Ferroelectrics 12 163
Google Scholar
[7] Whatmore R W, Osbond P C, Shorrocks N M 1987 Ferroelectrics 76 351
Google Scholar
[8] Nadoliisky M M, Vassileva T K, Yanchev R V 1991 Ferroelectrics 118 111
Google Scholar
[9] Frutos J D, Jimenez B 1992 Sens. Actuators A 32 393
Google Scholar
[10] Mendiola J, Alemany C, Frutos J D 1993 Sens. Actuators A 37 516
Google Scholar
[11] Stringfellow S B, Gupta S, Shaw C P, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 573
Google Scholar
[12] Shaw C P, Gupta S, Stringfellow S B, Navarro A, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 2123
Google Scholar
[13] Whatmore R W, Molter O, Shaw C P 2003 J. Eur. Ceram. Soc. 23 721
Google Scholar
[14] Liu S T, Long D 1978 Proc. IEEE 66 14
Google Scholar
[15] Whatmore R W 1986 Rep. Prog. Phys. 49 1335
Google Scholar
[16] Lang S B 2005 Phys. Today 58 31
Google Scholar
[17] Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33
Google Scholar
[18] Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 36
Google Scholar
[19] Arlt G, Hennings D, With G D 1985 J. Appl. Phys. 58 1619
Google Scholar
[20] Randall C A, Kim N, Kucera J P, Cao W, Shrout T R 2005 J. Am. Ceram. Soc. 81 677
Google Scholar
[21] Kamel T M, With G D 2008 J. Eur. Ceram. Soc. 28 851
Google Scholar
[22] Shaw C P, Whatmore R W, Alcock J R. Porous 2007 J. Am. Ceram. Soc. 90 137
Google Scholar
[23] Zeng T, Wang G S, Dong X L, He H L, Chen X F 2007 Mater. Sci. Eng. B 140 5
Google Scholar
[24] 聂恒昌, 王永龄, 贺红亮, 王根水, 董显林 2018 无机材料学报 33 153
Google Scholar
Nie H C, Wang Y L, He H L, Wang G S, Dong X L 2018 J. Inorg. Mater. 33 153
Google Scholar
[25] 景奇, 李晓娟 2019 68 057701
Google Scholar
Jing Q, Li X J 2019 Acta Phys. Sin. 68 057701
Google Scholar
[26] Venet M, Guerra J L S, Santos I A, Eiras J A, Garcia D 2007 J. Phys: Condens. Matter 19 026207
Google Scholar
[27] 伍萌佳, 杨群保, 李永祥 2007 无机材料学报 22 1025
Google Scholar
Wu M J, Yang Q B, Li Y X 2007 J. Inorg. Mater. 22 1025
Google Scholar
[28] Perls T A, Diesel T J, Dobrov W I 1958 J. Appl. Phys. 29 1297
Google Scholar
[29] Lang S B, Rice L H, Shaw S A 1969 J. Appl. Phys. 40 4335
Google Scholar
[30] Ianculescu A, Pintilie I, Vasilescu C A, Botea M, Iuga A, Melinescu A, Dragan N, Pintilie L 2016 Ceram. Int. 42 10338
Google Scholar
[31] Yoo J H, Gao W, Yoon K H 1999 J. Mater. Sci. 34 5361
Google Scholar
[32] Deb K K, Hi ll, M.D, Kelly J F 1992 J. Mater. Res. 7 3296
Google Scholar
[33] Deb K K 1994 MRS Proc. 360 127
Google Scholar
[34] Movchikova A, Malyshkina O, Suchaneck G, Gerlach G, Steinhausen R, Langhammer H T, Pientschke C, Beige H 2008 J. Electroceram. 20 43
Google Scholar
[35] Srikanth K S, Singh V P, Vaish R 2017 J. Eur. Ceram. Soc. 37 3943
Google Scholar
[36] Jha P A, Jha A K 2014 Indian J. Phys. 88 489
Google Scholar
[37] Srikanth K S, Vaish R 2017 J. Eur. Ceram. Soc. 37 3927
Google Scholar
[38] Sagar R, Madolappa S, Raibagkar R L 2012 Solid State Sci. 14 211
Google Scholar
[39] Whatmore R W, Watton R 2000 Ferroelectrics 236 259
Google Scholar
[40] Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602
Google Scholar
[41] Benabdallah F, Simon A, Khemakhem H, Elissalde C, Maglione M 2011 J. Appl. Phys. 109 124116
Google Scholar
[42] Yao S, Ren W, Ji H, Wu X, Ye Z G 2012 J. Phys. D: Appl. Phys. 45 195301
Google Scholar
[43] Liu X, Chen Z H, Wu D, Fang B J, Ding J N, Zhao X Y, Xu H Q, Luo H S 2015 Jpn. J. Appl. Phys. 54 071501
Google Scholar
[44] Liu X, Wu D, Chen Z H, Fa ng, B J, Di ng, J N, Zhao X Y, Luo H S 2015 Adv. Appl. Ceram. 114 436
Google Scholar
[45] Patel S, Chauhan A, Vaish R 2015 Solid State Sci. 52 10
Google Scholar
[46] Smolenskii G A, Isupov V A, Agranovskaya A I, Krainik N 1961 Sov. Phys. Solid State 2 2651
[47] Dorcet V, Trolliard G, Boullay P 2008 Chem. Mater. 20 5061
Google Scholar
[48] Trolliard G, Dorcet V 2008 Chem. Mater. 20 5074
Google Scholar
[49] Hagiyev M S, Ismailzade I H, Abiyev A K 1984 Ferroelectrics 56 215
Google Scholar
[50] Balakt A M, Shaw C P, Zhang Q 2017 J. Mater. Sci. 52 7382
Google Scholar
[51] Balakt A M, Shaw C P, Zhang Q 2016 J. Mater. Sci.: Mater. Electron. 27 12947
Google Scholar
[52] Balakt A M, Shaw C P, Zhang Q 2017 J. Eur. Ceram. Soc. 37 1459
Google Scholar
[53] Balakt A M, Shaw C P, Zhang Q 2017 Ceram. Int. 43 3726
Google Scholar
[54] Balakt A M, Shaw C P, Zhang Q 2017 J. Alloys Compd. 709 82
Google Scholar
[55] Jia J, Guo S, Yan S, Cao F, Yao C, Dong X, Wang G 2019 Appl. Phys. Lett. 114 032902
Google Scholar
[56] Guo F, Yang B, Zhang S, Wu F, Liu D, Hu P, Sun Y, Wang D, Cao W 2013 Appl. Phys. Lett. 103 182906
Google Scholar
[57] Shen M, Li W, Li M, Liu H, Xu, J M, Qiu S, Zhang G, Lu Z, Li H, Jiang S 2019 J. Eur. Ceram. Soc. 39 1810
Google Scholar
[58] Zhang X, Jiang G, Guo F, Liu D, Zhang S, Yang B, Cao W 2018 J. Am. Ceram. Soc. 101 2996
Google Scholar
[59] Yang Z, Liu B, Wei L, Hou Y 2008 Mater. Res. Bull. 43 81
Google Scholar
[60] Nagata H, Yoshida M, Makiuchi Y, Takenaka T 2003 Jpn. J. Appl. Phys. 42 7401
Google Scholar
[61] Mahdi R I, Al-Bahnam N J, Abbo A I, Hmood J K, Majid W H A 2016 J. Alloys Compd. 688 77
Google Scholar
[62] Lau S T, Cheng C H, Choy S H, Lin D M, Kwok K W, Chan H L W 2008 J. Appl. Phys. 103 104105
Google Scholar
[63] Zhang Q, Jiang S, Yang T 2012 J. Electroceram. 29 8
Google Scholar
[64] Jia J, Guo S, Cao F, Yan S, Yao C, Dong X, Wang G 2019 Mater. Res. Express 6 046308
Google Scholar
[65] Patel S, Chauhan A, Kundu S, Madhar N A, Ilahi B, Vaish R, Varma K B R 2015 AIP Adv. 5 087145
Google Scholar
[66] Peng P, Nie H, Liu Z, Cao F, Wang G, Dong X 2018 J. Am. Ceram. Soc. 101 4044
Google Scholar
[67] Liu Z, Ren W, Peng P, Guo S, Lu T, Liu Y, Dong X, Wang G 2018 Appl. Phys. Lett. 112 142903
Google Scholar
[68] Shen M, Qin Y, Zhang Y, Marwat M A, Zhang C, Wang W, Li M, Zhang H, Zhang G, Jiang S 2019 J. Am. Ceram. Soc. 102 3990
Google Scholar
[69] Ballman A A, Brown H 1967 J. Cryst. Growth 1 311
Google Scholar
[70] Glass A M 1969 J. Appl. Phys. 40 4699
Google Scholar
[71] Zhang J, Wang G, Gao F, Mao C, Cao F, Dong X 2013 Ceram. Int. 39 1971
Google Scholar
[72] Santos I A, Spinola D U, Garcia D, Eiras J A 2002 J. Appl. Phys. 92 3251
Google Scholar
[73] Yao Y, Mak C L, Wong K H, Lu S, Xu Z 2009 Int. J. Appl. Ceram. Technol. 6 671
Google Scholar
[74] Said M, Velayutham T S, Abd Majid W H 2017 Ceram. Int. 43 9783
Google Scholar
[75] Rao K S, Prasad T N V K V, Subrahmanyam A S V, Lee J H, Kim J J, Cho S H 2003 Mater. Sci. Eng. B 98 279
Google Scholar
[76] Yao Y B, Mak C L, Ploss B 2012 J. Eur. Ceram. Soc. 32 4353
Google Scholar
[77] Qi Y, Lu C, Zhu J, Chen X, Song H, Zhang H, Xu X 2005 Appl. Phys. Lett. 87 082904
Google Scholar
[78] Ke S, Fan H, Huang H, Chan H, Yu S 2008 J. Appl. Phys. 104 024101
Google Scholar
[79] Muehlberg M, Burianek M, Joschko B, Klimm D, Danilewsky A, Gelissen M, Bayarjargal L, Gorler G P, Hildmann B O 2008 J. Cryst. Growth 310 2288
Google Scholar
[80] Zhang J, Dong X, Cao F, Guo S, Wang G 2013 Appl. Phys. Lett. 102 102908
Google Scholar
[81] Yao Y, Guo K, Bi D, Tao T, Liang B, Mak C L, Lu S G 2018 J. Mater. Sci. 29 17777
Google Scholar
[82] Chen H, Guo S, Dong X, Cao F, Mao C, Wang G 2017 J. Alloys Compd. 695 2723
Google Scholar
[83] Nagata K, Yamamoto Y, Igarashi H, Okazaki K 1981 Ferroelectrics 38 853
Google Scholar
[84] Venet M, Santos I A, Eiras J A, Garcia D 2006 Solid State Ionics 177 589
Google Scholar
[85] Venet M, Vendramini A, Santos I A, Eiras J A, Garcia D 2005 Mater. Sci. Eng. B 117 254
Google Scholar
[86] Duran C, Trolier-McKinstry S, Messing G L 2000 J. Am. Ceram. Soc. 83 2203
Google Scholar
[87] Dursun S, Mensur-Alkoy E, Alkoy S 2016 J. Eur. Ceram. Soc. 36 2479
Google Scholar
[88] Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 381
Google Scholar
[89] Kubota T, Tanaka N, Kageyama K, Takagi H, Sakabe Y, Suzuki T S, Sakka Y 2009 Jpn. J. Appl. Phys. 48 031405
Google Scholar
[90] Chen H, Guo S, Yao C, Dong X, Mao C, Wang G 2017 Ceram. Int. 43 3610
Google Scholar
[91] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, nakamura M 2004 Nature 432 84
Google Scholar
[92] Birol H, Damjanovic D, Setter N 2006 J. Eur. Ceram. Soc. 26 861
Google Scholar
[93] Jiang X P, Chen Y, Lam K H, Choy S H, Wang J 2010 J. Alloys Compd. 506 323
Google Scholar
[94] Zhang Y Y, Zhang J P, Wang E P, Jiang S L, Lu L 2013 Appl. Mech. Mater. 377 161
Google Scholar
[95] Zhou M, Liang R, Zhou Z, Dong X 2020 J. Am. Ceram. Soc. 103 193
Google Scholar
[96] Zhou M, Liang R, Zhou Z, Dong X 2019 J. Eur. Ceram. Soc. 39 2058
Google Scholar
[97] Li S, Nie H, Wang G, Liu N, Zhou M, Cao F, Dong X 2019 J. Mater. Chem. C 7 4403
Google Scholar
[98] Takenaka T, Sakata K 1991 Ferroelectrics 118 123
Google Scholar
[99] Tang Y, Shen Z, Zhang S, Shrout T R 2016 J. Am. Ceram. Soc. 99 1294
Google Scholar
[100] Zhao M, Wang C, Zhong W, Wang J, Chen H 2002 Jpn. J. Appl. Phys. 41 1455
Google Scholar
[101] Tang Y, Shen Z Y, Du Q, Zhao X, Wang F, Qin X, Wang T, Shi W, Sun D, Zhou Z, Zhang S 2018 J. Eur. Ceram. Soc. 38 5348
Google Scholar
[102] Takenaka T, Sakata K 1989 Ferroelectrics 94 175
Google Scholar
[103] Takenaka T, Sakata K 1980 Jpn. J. Appl. Phys. 19 31
Google Scholar
[104] Shen Z, Liu J, Grins J, Nygren M, Wang P, Kan Y, Yan H, Sutter U 2005 Adv. Mater. 17 676
Google Scholar
[105] Chen W, Hotta Y, Tamura T, Miwa K, Watari K 2006 Scr. Mater. 54 2063
Google Scholar
[106] Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 490
Google Scholar
[107] Karthik C, Varma K B R 2008 Mater. Res. Bull. 43 3026
Google Scholar
-
图 9 Cax(Sr0.5Ba0.5)1–x Nb2O6 (x = 0, 0.10, 0.15, 0.20)无铅铁电陶瓷热释电性能 (a) 电流响应优值Fi; (b) 电压响应优值Fv; (c) 探测率优值Fd; (d) 热释电系数[80]
Fig. 9. Pyroelectric figures of merits (a) Fi, (b) Fv, (c) Fd, and (d) pyroelectric coefficient as a function of temperature for Cax(Sr0.5Ba0.5)1–x Nb2O6 (x = 0, 0.10, 0.15, 0.20) ceramics[80].
图 10 Cax Sr0.3–x Ba0.7Nb2O6陶瓷热释电及退极化性能 (a) 热释电系数; (b)退极化性能(以样品高温退火后d33T与完全极化d33RT比值表示)[82]
Fig. 10. (a) Pyroelectric coefficient as a function of temperature of CSBN (x) ceramics; (b) the ratio of piezoelectric constant measured at different temperatures (d33T) to room temperature piezoelectric constant (d33RT) of ceramics and commercially PZT ceramics. The inset shows the depoling results for CSBN (x).
图 11 (a) Sr0.63Ba0.37Nb2O6陶瓷普通烧结与热锻烧结的介电温谱与损耗温谱; (b) Sr0.63Ba0.37Nb2O6陶瓷热锻样品的室温电滞回线; (c) Sr0.53Ba0.47Nb2O6和Sr0.63Ba0.37Nb2O6陶瓷热锻样品热释电系数温谱; (d) Sr0.53Ba0.47Nb2O6和Sr0.63Ba0.37Nb2O6陶瓷热锻样品电流响应优值温谱[84]
Fig. 11. (a) Dielectric constant and loss as a function of temperature for the Sr0.63Ba0.37Nb2O6 ordinary sintering (O.S) and hot forging (H.F) ceramics (1. H.F∥; 2. O.S; 3. H.F⊥); (b) hysteresis loops for the Sr0.63Ba0.37Nb2O6 H.F ceramics at room temperature and 50 Hz; (c) pyroelectric coefficient as a function of temperature for SBN textured ceramics; (d) figure of merit Fi as a function of temperature for SBN textured ceramics[84].
表 1 BT基无铅铁电陶瓷的热释电性能列表
Table 1. Pyroelectric properties of BT-based lead-free ferroelectric ceramics.
材料组成 热释电系数/
10–4 C·m–2·K–1介电
常数介电
损耗居里
温度/℃Fi/pm·V–1 Fv/m2·C–1 Fd/µPa–1/2 文献 BaTiO3 2.00 1200 120 80 0.0080 4.20 [28] Ba0.95Ca0.05TiO3 ~2.00 113 [29] Ba0.90Sr0.10TiO3 4.70 1088 0.016 108 0.0173 [30] Ba0.80Sr0.20TiO3 4.20 1419 0.018 77 0.0118 [30] BaSn0.05Ti0.95O3 4.32 2520 0.029 77 228 0.0100 8.20 [35] Porous BaSn0.05Ti0.95O3 5.57 2180 0.035 / 355 0.01800 22.00 [35] BaZr0.025Ti0.975O3 7.50 105 [36] BaCe0.10Ti0.90O3 7.82 83 339 0.0110 10.39 [37] 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 5.84 93 [32] (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-1 wt%Li 8.60 2590 0.033 79 407.6 0.0150 15.80 [43] (Ba0.85Sr0.15)(Zr0.1Ti0.9)O3 14.00 4691 0.041 46 600 0.0150 14.50 [45] (Ba0.84Ca0.15Sr0.01)(Zr0.09Ti0.9Sn0.01)O3 11.70 4200 0.020 83 479 0.0130 18.10 [44] Modified PZT 3.80 290 0.003 230 152 0.0600 58.00 [15] Modified PT 3.80 220 0.011 255 152 0.0800 33.00 [15] PMN-PZT 3.56 218 0.007 226 142 0.0741 59.30 [12] 表 2 BNT基无铅铁电陶瓷的热释电性能列表
Table 2. Pyroelectric properties of BNT-based lead-free ferroelectric ceramics.
材料组成 热释电系数/10–4 C·m–2·K–1 介电常数 介电损耗 居里温度/℃ 退极化
温度/℃Fi/pm·V–1 Fv/m2·C–1 Fd/µPa–1/2 文献 (Bi0.5Na0.5)TiO3 2.50 320 200 [49] 0.94BNT-0.06BT 3.15 396 0.0436 115 112 0.0210 9.080 [50] 0.94(Bi0.52Na0.52)TiO3-0.06BT 6.99 55 250 0.0470 16.630 [50] 0.94BNT-0.06BT-0.005La+0.002Ta 12.92 671 0.0472 40 461 0.0780 2.760 [54] 0.94BNT-0.06BT-0.005La 7.42 69 265 0.0480 1.400 [52] 0.94BNT-0.06Ba1.02TiO3 3.54 85 124 0.0095 8.300 [51] 0.80BNT-0.20BT 2.42 209 0.0268 15.300 [55] 0.93BNT-0.07Ba(Zr0.055Ti0.945)O3 5.70 87 203 0.0220 10.500 [56] 0.93BNT-0.07Ba(Zr0.055Ti0.945)O3-0.00125Mn 6.10 ~300 72 217 0.0230 12.600 [58] 0.94BNT-0.06Ba(Zr0.25Ti0.75)O3 27.20 1462 0.0460 300 38 0.0750 [57] 0.95(0.95BNT-0.05BKT)-0.05BT 3.25 853 0.0278 1945 0.0260 13.430 [52] 0.95(0.94BNT-0.016BLT-0.05BKT)-0.05BT 3.60 858 0.0294 221 0.0290 14.750 [52] 0.82BNT-0.18BKT-0.008Mn 17.00 605 0.0160 ~350 ~150 65.600 [53] 0.88BNT-0.084BKT-0.036BT 3.66 933 0.0235 301 165 215 0.0260 15.408 [61] 0.98BNT-0.02BA 3.87 330 0.0110 ~300 190 138 0.0471 23.300 [66] 0.98(0.98BNT-0.02BA)-0.02NN 7.48 372 0.0110 ~300 155 266 0.0807 42.200 [66] 0.97(0.99BNT-0.01BA)-0.03KNN 3.70 512 0.0290 282 118 132 0.0289 11.500 [67] 0.98(0.98BNT-0.02BA)-0.02KNN 8.42 880 0.0400 ~280 303 0.0390 17.200 [68] 0.715BNT-0.22ST-0.065BT-0.4 wt%glass 6.80 734 0.1430 157 / 0.0370 8.850 [65] 0.98BNT-0.02BN 4.42 465 0.0080 195 171 0.0382 27.400 [64] 0.97BNT-0.03BNN 5.60 549 0.0090 143 217 0.041 30.100 [64] 表 4 KNN基铁电陶瓷的热释电性能列表
Table 4. Pyroelectric properties of KNN-based lead-free ferroelectric ceramics.
材料组成 热释电系数/
10–4 C·m–2·K–1介电
常数介电
损耗居里
温度/℃退极化
温度/℃Fi/pm·V–1 Fv/m2·C–1 Fd/µPa–1/2 文献 KNN 1.40 472 410 [92] 0.97KNN-0.03BKT+0.8 wt%MnO 2.21 1277 0.031 ~350 90.07 0.0080 4.81 [93] 0.97KNN-0.03BKT+2 wt%MnO 2.18 980 0.035 ~350 99.4 0.0114 5.71 [93] 0.96(K0.5N0.5)(Nb0.8Ta0.2)O3-0.04Li(Nb0.8Ta0.2)O3 1.65 1230 0.018 123.5 0.0110 8.82 [62] 0.96(K0.5N0.5)(Nb0.84Ta0.1Sb0.06)O3-0.04Li(Nb0.84Ta0.1Sb0.06)O3 1.90 1520 0.018 93.1 0.0070 5.98 [62] 0.95(K0.45Na0.55) NbO3-0.05LiSbO3 15.00 891 35 [94] NaNbO3-0.01MnO-0.005Bi2O3 1.85 270 67 0.0333 53.20 [96] 0.85NaNbO3-0.15Ba0.6(Bi0.5Na0.5)0.4TiO3 3.11 1151 0.016 110 104 0.0102 8.10 [95] 0.95AgNbO3-0.05LiTaO3 3.68 252 0.022 130 138 0.0602 19.70 [97] 表 3 SBN基无铅铁电陶瓷的热释电性能列表
Table 3. Pyroelectric properties of SBN-based lead-free ferroelectric ceramics.
材料组成 热释电系数
/10–4C·m–2·K–1介电
常数介电
损耗居里
温度/℃Fi/pm·V–1 Fv/m2·C–1 Fd/µPa–1/2 文献 Sr0.5Ba0.5Nb2O6 2.00 84 [71] Gd0.01Sr0.515Ba0.47Nb2O6 2.85 2480 149 4.5 [74] (K0.5Na0.5)2.3(Sr0.6Ba0.4)3.85Nb10O30 2.11 ~1600 227 14.1 [76] Ca0.15(Sr0.5Ba0.5)0.85Nb2O6 3.61 933 0.0270 ~90 172 0.0210 11.5 [80] Sr0.525Ca0.125Ba0.35Nb2O6 2.37 ~50 [81] Ca0.2Sr0.1Ba0.7Nb2O6 1.24 217 60 0.0203 6.1 [82] Sr0.53Ba0.47Nb2O6 H.F(⊥) 5.10 980 0.0180 ~105 230 0.0281 18.7 [84] Sr0.53Ba0.47Nb2O6 H.F(//) 4.00 468 0.0050 ~115 189 0.0456 40.6 [84] Sr0.53Ba0.47Nb2O6 TGG(⊥) 2.90 770 0.0360 148 [86] Sr0.3Ba0.7Nb2O6 O.F 0.71 491 0.0469 163 34 0.0078 2.4 [90] Sr0.3Ba0.7Nb2O6 H.P(200 MPa⊥) 2.38 676 0.0534 163 113 0.0189 6.3 [90] 表 5 BLSF铁电陶瓷的热释电性能列表
Table 5. Pyroelectric properties of KNN-based lead-free ferroelectric ceramics.
材料组成 热释电系数
/10–4 C·m–2·K–1介电
常数介电
损耗居里
温度/℃Fi/pm·V–1 Fv/m2·C–1 Fd/µPa–1/2 文献 (NaBi)Bi4Ti4O15+1 wt%MnCO3(O.F) 0.560 140 0.0029 658 18.70 0.015 9.88 [102] (NaBi)Bi4Ti4O15+1 wt%MnCO3(H.F) 1.300 149 0.0032 660 43.50 0.033 21.1 [102] (NaBi)0.95Ca0.05Bi4Ti4O15+1 wt%MnCO3(O.F) 0.820 148 0.0016 680 29.10 0.027 63.5 [102] (NaBi)0.95Ca0.05Bi4Ti4O15+1 wt%MnCO3(H.F) 1.000 134 0.0017 665 35.20 0.032 78.4 [102] Sr1.1Bi3.9Ti3.9Ta0.1O15+0.5 wt%MnCO3 1.300 190 0.0010 ~520 0.030 40.0 [100] CaBi4Ti4O15 0.359 145 0.0080 790 14.74 0.012 4.6 [99] CaBi4Ti3.95Nb0.05O15 0.440 136 0.0060 790 18.07 0.015 6.7 [99] CaBi4Ti4O15+0.2 wt%MnO2 0.582 130 0.0050 790 23.90 0.021 10.0 [99] CaBi4Ti3.95Nb0.05O15+0.2 wt%MnO2 0.844 99 0.0020 790 34.65 0.040 24.4 [99] Bi4Ti2.9W0.1O12-0.04%Mn 0.571 147 0.0030 655 [101] -
[1] 钟维烈 2000 铁电体物理学 (北京: 科学出版社) 第17页
Zhong W L 2000 Ferroelectric Physics (Beijing: Science Press) p17 (in Chinese)
[2] 王永龄 2003 功能陶瓷性能与应用 (北京: 科学出版社) 第3页
Wang Y L 2003 Performance and Application of Functional Ceramics (Beijing: Science Press) p3 (in Chinese)
[3] 殷之文 2003 电介质物理学 (第二版) (北京: 科学出版社) 第715页
Yin Z W 2003 Dielectrics Physics (2nd Ed.) (Beijing: Science Press) p715 (in Chinese)
[4] Wentz J L, Kennedy L Z 1964 J. Appl. Phys. 35 1767
Google Scholar
[5] Liu S T, Kyonka J 1974 Ferroelectrics 7 167
Google Scholar
[6] Hardiman B, Reeves C P, Zeyfang R R 1976 Ferroelectrics 12 163
Google Scholar
[7] Whatmore R W, Osbond P C, Shorrocks N M 1987 Ferroelectrics 76 351
Google Scholar
[8] Nadoliisky M M, Vassileva T K, Yanchev R V 1991 Ferroelectrics 118 111
Google Scholar
[9] Frutos J D, Jimenez B 1992 Sens. Actuators A 32 393
Google Scholar
[10] Mendiola J, Alemany C, Frutos J D 1993 Sens. Actuators A 37 516
Google Scholar
[11] Stringfellow S B, Gupta S, Shaw C P, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 573
Google Scholar
[12] Shaw C P, Gupta S, Stringfellow S B, Navarro A, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 2123
Google Scholar
[13] Whatmore R W, Molter O, Shaw C P 2003 J. Eur. Ceram. Soc. 23 721
Google Scholar
[14] Liu S T, Long D 1978 Proc. IEEE 66 14
Google Scholar
[15] Whatmore R W 1986 Rep. Prog. Phys. 49 1335
Google Scholar
[16] Lang S B 2005 Phys. Today 58 31
Google Scholar
[17] Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33
Google Scholar
[18] Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 36
Google Scholar
[19] Arlt G, Hennings D, With G D 1985 J. Appl. Phys. 58 1619
Google Scholar
[20] Randall C A, Kim N, Kucera J P, Cao W, Shrout T R 2005 J. Am. Ceram. Soc. 81 677
Google Scholar
[21] Kamel T M, With G D 2008 J. Eur. Ceram. Soc. 28 851
Google Scholar
[22] Shaw C P, Whatmore R W, Alcock J R. Porous 2007 J. Am. Ceram. Soc. 90 137
Google Scholar
[23] Zeng T, Wang G S, Dong X L, He H L, Chen X F 2007 Mater. Sci. Eng. B 140 5
Google Scholar
[24] 聂恒昌, 王永龄, 贺红亮, 王根水, 董显林 2018 无机材料学报 33 153
Google Scholar
Nie H C, Wang Y L, He H L, Wang G S, Dong X L 2018 J. Inorg. Mater. 33 153
Google Scholar
[25] 景奇, 李晓娟 2019 68 057701
Google Scholar
Jing Q, Li X J 2019 Acta Phys. Sin. 68 057701
Google Scholar
[26] Venet M, Guerra J L S, Santos I A, Eiras J A, Garcia D 2007 J. Phys: Condens. Matter 19 026207
Google Scholar
[27] 伍萌佳, 杨群保, 李永祥 2007 无机材料学报 22 1025
Google Scholar
Wu M J, Yang Q B, Li Y X 2007 J. Inorg. Mater. 22 1025
Google Scholar
[28] Perls T A, Diesel T J, Dobrov W I 1958 J. Appl. Phys. 29 1297
Google Scholar
[29] Lang S B, Rice L H, Shaw S A 1969 J. Appl. Phys. 40 4335
Google Scholar
[30] Ianculescu A, Pintilie I, Vasilescu C A, Botea M, Iuga A, Melinescu A, Dragan N, Pintilie L 2016 Ceram. Int. 42 10338
Google Scholar
[31] Yoo J H, Gao W, Yoon K H 1999 J. Mater. Sci. 34 5361
Google Scholar
[32] Deb K K, Hi ll, M.D, Kelly J F 1992 J. Mater. Res. 7 3296
Google Scholar
[33] Deb K K 1994 MRS Proc. 360 127
Google Scholar
[34] Movchikova A, Malyshkina O, Suchaneck G, Gerlach G, Steinhausen R, Langhammer H T, Pientschke C, Beige H 2008 J. Electroceram. 20 43
Google Scholar
[35] Srikanth K S, Singh V P, Vaish R 2017 J. Eur. Ceram. Soc. 37 3943
Google Scholar
[36] Jha P A, Jha A K 2014 Indian J. Phys. 88 489
Google Scholar
[37] Srikanth K S, Vaish R 2017 J. Eur. Ceram. Soc. 37 3927
Google Scholar
[38] Sagar R, Madolappa S, Raibagkar R L 2012 Solid State Sci. 14 211
Google Scholar
[39] Whatmore R W, Watton R 2000 Ferroelectrics 236 259
Google Scholar
[40] Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602
Google Scholar
[41] Benabdallah F, Simon A, Khemakhem H, Elissalde C, Maglione M 2011 J. Appl. Phys. 109 124116
Google Scholar
[42] Yao S, Ren W, Ji H, Wu X, Ye Z G 2012 J. Phys. D: Appl. Phys. 45 195301
Google Scholar
[43] Liu X, Chen Z H, Wu D, Fang B J, Ding J N, Zhao X Y, Xu H Q, Luo H S 2015 Jpn. J. Appl. Phys. 54 071501
Google Scholar
[44] Liu X, Wu D, Chen Z H, Fa ng, B J, Di ng, J N, Zhao X Y, Luo H S 2015 Adv. Appl. Ceram. 114 436
Google Scholar
[45] Patel S, Chauhan A, Vaish R 2015 Solid State Sci. 52 10
Google Scholar
[46] Smolenskii G A, Isupov V A, Agranovskaya A I, Krainik N 1961 Sov. Phys. Solid State 2 2651
[47] Dorcet V, Trolliard G, Boullay P 2008 Chem. Mater. 20 5061
Google Scholar
[48] Trolliard G, Dorcet V 2008 Chem. Mater. 20 5074
Google Scholar
[49] Hagiyev M S, Ismailzade I H, Abiyev A K 1984 Ferroelectrics 56 215
Google Scholar
[50] Balakt A M, Shaw C P, Zhang Q 2017 J. Mater. Sci. 52 7382
Google Scholar
[51] Balakt A M, Shaw C P, Zhang Q 2016 J. Mater. Sci.: Mater. Electron. 27 12947
Google Scholar
[52] Balakt A M, Shaw C P, Zhang Q 2017 J. Eur. Ceram. Soc. 37 1459
Google Scholar
[53] Balakt A M, Shaw C P, Zhang Q 2017 Ceram. Int. 43 3726
Google Scholar
[54] Balakt A M, Shaw C P, Zhang Q 2017 J. Alloys Compd. 709 82
Google Scholar
[55] Jia J, Guo S, Yan S, Cao F, Yao C, Dong X, Wang G 2019 Appl. Phys. Lett. 114 032902
Google Scholar
[56] Guo F, Yang B, Zhang S, Wu F, Liu D, Hu P, Sun Y, Wang D, Cao W 2013 Appl. Phys. Lett. 103 182906
Google Scholar
[57] Shen M, Li W, Li M, Liu H, Xu, J M, Qiu S, Zhang G, Lu Z, Li H, Jiang S 2019 J. Eur. Ceram. Soc. 39 1810
Google Scholar
[58] Zhang X, Jiang G, Guo F, Liu D, Zhang S, Yang B, Cao W 2018 J. Am. Ceram. Soc. 101 2996
Google Scholar
[59] Yang Z, Liu B, Wei L, Hou Y 2008 Mater. Res. Bull. 43 81
Google Scholar
[60] Nagata H, Yoshida M, Makiuchi Y, Takenaka T 2003 Jpn. J. Appl. Phys. 42 7401
Google Scholar
[61] Mahdi R I, Al-Bahnam N J, Abbo A I, Hmood J K, Majid W H A 2016 J. Alloys Compd. 688 77
Google Scholar
[62] Lau S T, Cheng C H, Choy S H, Lin D M, Kwok K W, Chan H L W 2008 J. Appl. Phys. 103 104105
Google Scholar
[63] Zhang Q, Jiang S, Yang T 2012 J. Electroceram. 29 8
Google Scholar
[64] Jia J, Guo S, Cao F, Yan S, Yao C, Dong X, Wang G 2019 Mater. Res. Express 6 046308
Google Scholar
[65] Patel S, Chauhan A, Kundu S, Madhar N A, Ilahi B, Vaish R, Varma K B R 2015 AIP Adv. 5 087145
Google Scholar
[66] Peng P, Nie H, Liu Z, Cao F, Wang G, Dong X 2018 J. Am. Ceram. Soc. 101 4044
Google Scholar
[67] Liu Z, Ren W, Peng P, Guo S, Lu T, Liu Y, Dong X, Wang G 2018 Appl. Phys. Lett. 112 142903
Google Scholar
[68] Shen M, Qin Y, Zhang Y, Marwat M A, Zhang C, Wang W, Li M, Zhang H, Zhang G, Jiang S 2019 J. Am. Ceram. Soc. 102 3990
Google Scholar
[69] Ballman A A, Brown H 1967 J. Cryst. Growth 1 311
Google Scholar
[70] Glass A M 1969 J. Appl. Phys. 40 4699
Google Scholar
[71] Zhang J, Wang G, Gao F, Mao C, Cao F, Dong X 2013 Ceram. Int. 39 1971
Google Scholar
[72] Santos I A, Spinola D U, Garcia D, Eiras J A 2002 J. Appl. Phys. 92 3251
Google Scholar
[73] Yao Y, Mak C L, Wong K H, Lu S, Xu Z 2009 Int. J. Appl. Ceram. Technol. 6 671
Google Scholar
[74] Said M, Velayutham T S, Abd Majid W H 2017 Ceram. Int. 43 9783
Google Scholar
[75] Rao K S, Prasad T N V K V, Subrahmanyam A S V, Lee J H, Kim J J, Cho S H 2003 Mater. Sci. Eng. B 98 279
Google Scholar
[76] Yao Y B, Mak C L, Ploss B 2012 J. Eur. Ceram. Soc. 32 4353
Google Scholar
[77] Qi Y, Lu C, Zhu J, Chen X, Song H, Zhang H, Xu X 2005 Appl. Phys. Lett. 87 082904
Google Scholar
[78] Ke S, Fan H, Huang H, Chan H, Yu S 2008 J. Appl. Phys. 104 024101
Google Scholar
[79] Muehlberg M, Burianek M, Joschko B, Klimm D, Danilewsky A, Gelissen M, Bayarjargal L, Gorler G P, Hildmann B O 2008 J. Cryst. Growth 310 2288
Google Scholar
[80] Zhang J, Dong X, Cao F, Guo S, Wang G 2013 Appl. Phys. Lett. 102 102908
Google Scholar
[81] Yao Y, Guo K, Bi D, Tao T, Liang B, Mak C L, Lu S G 2018 J. Mater. Sci. 29 17777
Google Scholar
[82] Chen H, Guo S, Dong X, Cao F, Mao C, Wang G 2017 J. Alloys Compd. 695 2723
Google Scholar
[83] Nagata K, Yamamoto Y, Igarashi H, Okazaki K 1981 Ferroelectrics 38 853
Google Scholar
[84] Venet M, Santos I A, Eiras J A, Garcia D 2006 Solid State Ionics 177 589
Google Scholar
[85] Venet M, Vendramini A, Santos I A, Eiras J A, Garcia D 2005 Mater. Sci. Eng. B 117 254
Google Scholar
[86] Duran C, Trolier-McKinstry S, Messing G L 2000 J. Am. Ceram. Soc. 83 2203
Google Scholar
[87] Dursun S, Mensur-Alkoy E, Alkoy S 2016 J. Eur. Ceram. Soc. 36 2479
Google Scholar
[88] Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 381
Google Scholar
[89] Kubota T, Tanaka N, Kageyama K, Takagi H, Sakabe Y, Suzuki T S, Sakka Y 2009 Jpn. J. Appl. Phys. 48 031405
Google Scholar
[90] Chen H, Guo S, Yao C, Dong X, Mao C, Wang G 2017 Ceram. Int. 43 3610
Google Scholar
[91] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, nakamura M 2004 Nature 432 84
Google Scholar
[92] Birol H, Damjanovic D, Setter N 2006 J. Eur. Ceram. Soc. 26 861
Google Scholar
[93] Jiang X P, Chen Y, Lam K H, Choy S H, Wang J 2010 J. Alloys Compd. 506 323
Google Scholar
[94] Zhang Y Y, Zhang J P, Wang E P, Jiang S L, Lu L 2013 Appl. Mech. Mater. 377 161
Google Scholar
[95] Zhou M, Liang R, Zhou Z, Dong X 2020 J. Am. Ceram. Soc. 103 193
Google Scholar
[96] Zhou M, Liang R, Zhou Z, Dong X 2019 J. Eur. Ceram. Soc. 39 2058
Google Scholar
[97] Li S, Nie H, Wang G, Liu N, Zhou M, Cao F, Dong X 2019 J. Mater. Chem. C 7 4403
Google Scholar
[98] Takenaka T, Sakata K 1991 Ferroelectrics 118 123
Google Scholar
[99] Tang Y, Shen Z, Zhang S, Shrout T R 2016 J. Am. Ceram. Soc. 99 1294
Google Scholar
[100] Zhao M, Wang C, Zhong W, Wang J, Chen H 2002 Jpn. J. Appl. Phys. 41 1455
Google Scholar
[101] Tang Y, Shen Z Y, Du Q, Zhao X, Wang F, Qin X, Wang T, Shi W, Sun D, Zhou Z, Zhang S 2018 J. Eur. Ceram. Soc. 38 5348
Google Scholar
[102] Takenaka T, Sakata K 1989 Ferroelectrics 94 175
Google Scholar
[103] Takenaka T, Sakata K 1980 Jpn. J. Appl. Phys. 19 31
Google Scholar
[104] Shen Z, Liu J, Grins J, Nygren M, Wang P, Kan Y, Yan H, Sutter U 2005 Adv. Mater. 17 676
Google Scholar
[105] Chen W, Hotta Y, Tamura T, Miwa K, Watari K 2006 Scr. Mater. 54 2063
Google Scholar
[106] Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 490
Google Scholar
[107] Karthik C, Varma K B R 2008 Mater. Res. Bull. 43 3026
Google Scholar
计量
- 文章访问数: 16930
- PDF下载量: 437
- 被引次数: 0