搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆环孔阵列超材料对热释电太赫兹探测器性能影响关系研究

王杨涛 景蔚萱 韩枫 孟庆之 林启敬 赵立波 蒋庄德

引用本文:
Citation:

圆环孔阵列超材料对热释电太赫兹探测器性能影响关系研究

王杨涛, 景蔚萱, 韩枫, 孟庆之, 林启敬, 赵立波, 蒋庄德

Study on influence of ring hole array metamaterial on performance of pyroelectric terahertz detectors

Wang Yang-Tao, Jing Wei-Xuan, Han Feng, Meng Qing-Zhi, Lin Qi-Jing, Zhao Li-Bo, Jiang Zhuang-De
PDF
HTML
导出引用
  • 本文提出了新的基于圆环孔阵列超材料的钽酸锂热释电太赫兹探测器, 以提高0.1—1 THz频段太赫兹波探测性能. 仿真分析了内外径、周期、厚度等特征参数对圆环孔阵列超材料太赫兹波透射带宽及透射率的定量影响关系, 阐明了圆环孔阵列超材料与热释电探测器的不同结合方式对探测器的带宽及噪声等效功率的作用机理; 制备了两种圆环孔阵列超材料钽酸锂热释电太赫兹探测器; 测试了圆环孔阵列超材料的透射特性和两类热释电探测器的噪声等效功率. 结果表明, 所制备的圆环孔阵列超材料在0.25—0.65 THz频段透射率大于40%, 实现了带通滤波. 当圆环孔阵列超材料与热释电探测器保持足够间距时, 在0.315 THz点频其噪声等效功率为11.29 μW/Hz0.5, 是带通波段外0.1 THz噪声等效功率的6.3%, 实现了带通探测; 当圆环孔阵列超材料与热释电探测器贴合时, 在0.315 THz点频其噪声等效功率为4.64 μW/Hz0.5, 是无圆环孔阵列超材料探测器噪声等效功率的29.4 %, 实现了窄带探测. 上述结论可用于生物成像、大分子探测等领域中特定太赫兹波段的带通与窄带探测.
    In order to improve the detection performance of 0.1–1THz terahertz wave, a new lithium tantalate pyroelectric terahertz detector based on ring hole array metamaterial is proposed. The quantitative influences of the characteristic parameters such as inner diameter, outer diameter, period and thickness on the transmission bandwidth and transmittance of ring hole array metamaterials are analyzed by simulation. The mechanisms of the influences of different combinations of ring hole array metamaterials and pyroelectric detectors on the detection bandwidth and detection rate of terahertz waves are clarified. The lithium tantalate pyroelectric terahertz detectors of the ring hole array metamaterial ware are fabricated by the MEMS technology. The transmission of the ring hole array metamaterial and the noise equivalent power of the metamaterial detector at different frequencies are tested. The results show that the transmittance of the fabricated ring hole array metamaterial is greater than 40% at 0.25–0.65 THz, and bandpass filtering is realized. When the ring hole array metamaterial and the pyroelectric detector maintain a sufficient distance, the noise equivalent power of the detector at 0.315 THz is 11.29 μW/Hz0.5, which is 6.3% of the 0.1 THz noise equivalent power (outside the bandpass band), so the bandpass detection is achieved. When the ring hole array metamaterial is attached to the detector, the noise equivalent power of the metamaterial detector at 0.315 THz is 4.64 μW/Hz0.5, which is 29.4% that of the detector without the ring hole array metamaterial, so the narrowband detection is achieved. The above conclusions show that the pyroelectric terahertz detector based on the ring hole array metamaterial can realize the bandpass and narrowband detection of specific frequency band in applications such as biological imaging and macromolecular detection.
      通信作者: 景蔚萱, wxjing@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51975466) 资助的课题.
      Corresponding author: Jing Wei-Xuan, wxjing@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51975466).
    [1]

    Lewis R 2019 J. Phys. D Appl. Phys. 52 433001Google Scholar

    [2]

    Liang Z Q, Liu Z J, Wang T, Jiang Y D, Zheng X, Huang Z H, Wu X F 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Hongkong, China, Auguest 23–28, 2015 p1

    [3]

    Ding S H, Qi L, Li Y D, Wang Q 2011 Opt. Lett. 36 1993Google Scholar

    [4]

    Grant J, Escorcia-Carranza I, Li C, McCrindle I J, Gough J, Cumming D R 2013 Laser Photonics Rev. 7 1043Google Scholar

    [5]

    Kolenov I, Nesterov P, Nesterov I, Lukash A, Bezborodov V, Mizrakhy S 2020 IEEE Ukrainian Microwave Week (UkrMW) Kharkiv, Ukraine, September 21–25, 2020 p866

    [6]

    Liu W, Zhao P G, Wu C S, Liu C H, Yang J B, Zheng L 2019 Food Chem. 293 213Google Scholar

    [7]

    Yu H T, Anthony J F, Vincent P W 2020 Sensors 20 712Google Scholar

    [8]

    Zhang K S, Luo W B, Huang S T, Bai X Y, Shuai Y, Zhao Y, Zeng X Q, Wu C G, Zhao Y, Zeng X Q, Wu C Q, Zhang W 2020 Sensor. Actuat. A Phys. 313 112186Google Scholar

    [9]

    Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289Google Scholar

    [10]

    Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402Google Scholar

    [11]

    Müller R, Gutschwager B, Hollandt J, Kehrt M, Monte C, Müller R, Steiger A 2015 J. Infrared Millim. Te. 36 654Google Scholar

    [12]

    Deng T, Zhang Z H, Liu Y X, Wang Y G, Su F, Li S S, Zhang Y, Li H, Chen H J, Zhao Z R, Li Y, Liu Z W 2019 Nano Lett. 19 1494Google Scholar

    [13]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 68 47802Google Scholar

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 47802Google Scholar

    [14]

    Devi K M, Sarma A K, Chowdhury D R, Kumar G 2017 Opt. Express 25 10484Google Scholar

    [15]

    Lv T T, Dong G H, Qin C H, Qu J, Lv B, Li W J, Zhu Z, Li Y X, Guan C Y, Shi J H 2021 Opt. Express 29 5437Google Scholar

    [16]

    Hoof N, Huurne S, Vervuurt R, Bol A A, Rivas J G 2019 APL Photonics 4 036104Google Scholar

    [17]

    Zi J C, Xu Q, Wang Q, Tian C X, Li Y F, Zhang X X, Han J G, Zhang W 2018 Appl. Phys. Lett. 113 101104Google Scholar

    [18]

    Kuznetsov S A, Paulish A G, Navarro-Cía M, Arzhannikov A V 2016 Sci. Rep. 6 21079Google Scholar

    [19]

    Liu Z J, Liang Z Q, Zheng X, Jiang Y D 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Maison de la Chimie, France, September 1–6, 2019 p1

    [20]

    Zhang K S, Luo W B, Zeng X H, Huang S T, Xie Q, Wan L M, Shuai Y, Wu C H, Zhang W L 2022 IEEE Sensor. J. 22 10381Google Scholar

    [21]

    Suen J Y, Fan K, Montoya J, Bingham C, Padilla W J 2017 Optica 4 276Google Scholar

    [22]

    Tan X C, Li J Y, Yang A, Liu H, Yi F 2018 Conference on Lasers and Electro-Optics (CLEO) San Jose Convention Center, United States, May, 13–18, 2018 p4

    [23]

    Ranacher C, Consani C, Tortschanoff A, Rauter L, Jakoby B 2019 Sensors 19 2513Google Scholar

    [24]

    Ebrahim S, Elshaer A, Soliman M, Tayl M 2016 Sensor. Actuat. A Phys. 238 389Google Scholar

    [25]

    Han F Y, Liu P K 2020 Adv. Opt. Mater. 8 1901331Google Scholar

    [26]

    Wang B X, Wang G Z, Wang L L, Zhai X 2016 IEEE Photonic. Tech. Lett. 28 307Google Scholar

    [27]

    Guo W L, Dong Z, Xu Y J, Liu C L, Wei D C, Zhang L B, Shi X Y, Guo C, Xu H, Chen G, Wang L, Zhang K, Chen X S, Lu W 2020 Adv. Sci. 7 1902699Google Scholar

    [28]

    Rodrigo S G, Martín-Moreno L 2016 Opt. Lett. 41 293Google Scholar

    [29]

    Xia S, Yang D X, Li T, Liu X, Wang J 2014 Opt. Lett. 39 1270Google Scholar

    [30]

    Wu Z R, Wang L, Peng Y T, Young A, Seraphin S, Hao X 2008 J. Appl. Phys. 103 56

    [31]

    Wang Y, Cui Z J, Zhu D Y, Zhang X B, Qian L 2018 Opt. Express 26 15343Google Scholar

  • 图 1  圆环孔阵列超材料结构设计图 (a) 俯视图; (b) 左视图

    Fig. 1.  Diagram of an Au ring hole array metamaterial structure: (a) Top view; (b) left view.

    图 2  不同结合方式的圆环孔阵列超材料热释电太赫兹探测器原理图 (a) 带通超材料探测器; (b) 窄带超材料探测器

    Fig. 2.  Schematic diagram of ring hole array metamaterial pyroelectric terahertz detectors with different combinations: (a) Bandpass metamaterial detector; (b) narrowband metamaterial detector.

    图 3  圆环孔阵列超材料热释电太赫兹探测器的制备 (a)制备工艺流程图; (b) 带通超材料探测器; (c) 窄带超材料探测器

    Fig. 3.  Fabrication of ring hole array metamaterial pyroelectric terahertz detector: (a) Fabrication process flow chart; (b) bandpass metamaterial detector; (c) narrowband metamaterial detector.

    图 4  实验测试示意图 (a) 太赫兹时域光谱仪Advantest TAS7500TS实验测量示意图; (b) 频域反射式测试光路示意图

    Fig. 4.  Schematic diagram of test: (a) Experimental measurement of terahertz time-domain spectrometer Advantest TAS7500 TS; (b) frequency domain reflectometry test system.

    图 5  不同特征参数下圆环孔阵列超材料HFSS仿真透射曲线 (a) 内径r; (b) 外径R; (c) 周期P; (d) 基底厚度T

    Fig. 5.  HFSS simulation transmission curve of ring hole array metamaterials under different characteristic parameters: (a) Inner diameter; (b) outer diameter; (c) period; (d) the thickness of the substrate.

    图 6  圆环孔阵列超材料的性能与表征 (a) 0.1—1.3 THz波段HFSS仿真与时域光谱实验的透射率曲线; (b) 圆环孔阵列超材料光学显微图

    Fig. 6.  Test properties of the ring hole array metamaterial: (a) 0.1–1.3 THz transmission curve; (b) optical micrograph of the ring hole array metamaterial.

    图 7  窄带超材料探测器和碳纳米管吸收特性 (a) 窄带超材料探测器与碳纳米管吸收层的吸收率曲线; (b) 窄带太赫兹吸收器原理图; (c) 125—250 μm石英厚度下的窄带太赫兹吸收器吸收特性; (d) 吸收峰频率随石英厚度的变化规律

    Fig. 7.  Narrowband terahertz detector and carbon nanotube absorption properties: (a) Absorption curve of narrowband terahertz detector and carbon nanotube absorber; (b) schematic of the Narrowband terahertz absorber; (c) absorption characteristics of narrowband metamaterial absorber at 125–250 μm quartz thickness; (d) variation of absorption peak frequency with quartz thickness.

    表 1  热释电太赫兹探测器和带通超材料探测器在0.1 THz和0.315 THz频率下性能对比

    Table 1.  Performance comparison of the pyroelectric terahertz detector and the bandpass metamaterial detector at frequencies of 0.1 THz and 0.315 THz.

    探测器类型0.315 THz0.1 THz
    VN/μVVR/μVNEP/(μW·Hz–0.5)VN/μVVR/μVNEP/(μW·Hz–0.5)
    热释电太赫兹探测器2.96220.015.803.03220.016.17
    带通超材料探测器1.06110.311.290.956.2179.94
    下载: 导出CSV

    表 2  热释电太赫兹探测器和窄带超材料探测器在0.1 THz和0.315 THz频率下性能对比

    Table 2.  Performance comparison of the pyroelectric terahertz detector and the narrowband metamaterial detector at frequencies of 0.1 THz and 0.315 THz.

    探测器类型0.315 THz0.1 THz
    VN/μVVR/μVNEP/(μW·Hz–0.5)VN/μVVR/μVNEP/(μW·Hz–0.5)
    热释电
    太赫兹探测器
    2.96220.015.803.03220.016.17
    窄带
    超材料探测器
    1.03260.64.641.0248.524.70
    下载: 导出CSV
    Baidu
  • [1]

    Lewis R 2019 J. Phys. D Appl. Phys. 52 433001Google Scholar

    [2]

    Liang Z Q, Liu Z J, Wang T, Jiang Y D, Zheng X, Huang Z H, Wu X F 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Hongkong, China, Auguest 23–28, 2015 p1

    [3]

    Ding S H, Qi L, Li Y D, Wang Q 2011 Opt. Lett. 36 1993Google Scholar

    [4]

    Grant J, Escorcia-Carranza I, Li C, McCrindle I J, Gough J, Cumming D R 2013 Laser Photonics Rev. 7 1043Google Scholar

    [5]

    Kolenov I, Nesterov P, Nesterov I, Lukash A, Bezborodov V, Mizrakhy S 2020 IEEE Ukrainian Microwave Week (UkrMW) Kharkiv, Ukraine, September 21–25, 2020 p866

    [6]

    Liu W, Zhao P G, Wu C S, Liu C H, Yang J B, Zheng L 2019 Food Chem. 293 213Google Scholar

    [7]

    Yu H T, Anthony J F, Vincent P W 2020 Sensors 20 712Google Scholar

    [8]

    Zhang K S, Luo W B, Huang S T, Bai X Y, Shuai Y, Zhao Y, Zeng X Q, Wu C G, Zhao Y, Zeng X Q, Wu C Q, Zhang W 2020 Sensor. Actuat. A Phys. 313 112186Google Scholar

    [9]

    Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289Google Scholar

    [10]

    Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402Google Scholar

    [11]

    Müller R, Gutschwager B, Hollandt J, Kehrt M, Monte C, Müller R, Steiger A 2015 J. Infrared Millim. Te. 36 654Google Scholar

    [12]

    Deng T, Zhang Z H, Liu Y X, Wang Y G, Su F, Li S S, Zhang Y, Li H, Chen H J, Zhao Z R, Li Y, Liu Z W 2019 Nano Lett. 19 1494Google Scholar

    [13]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 68 47802Google Scholar

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 47802Google Scholar

    [14]

    Devi K M, Sarma A K, Chowdhury D R, Kumar G 2017 Opt. Express 25 10484Google Scholar

    [15]

    Lv T T, Dong G H, Qin C H, Qu J, Lv B, Li W J, Zhu Z, Li Y X, Guan C Y, Shi J H 2021 Opt. Express 29 5437Google Scholar

    [16]

    Hoof N, Huurne S, Vervuurt R, Bol A A, Rivas J G 2019 APL Photonics 4 036104Google Scholar

    [17]

    Zi J C, Xu Q, Wang Q, Tian C X, Li Y F, Zhang X X, Han J G, Zhang W 2018 Appl. Phys. Lett. 113 101104Google Scholar

    [18]

    Kuznetsov S A, Paulish A G, Navarro-Cía M, Arzhannikov A V 2016 Sci. Rep. 6 21079Google Scholar

    [19]

    Liu Z J, Liang Z Q, Zheng X, Jiang Y D 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Maison de la Chimie, France, September 1–6, 2019 p1

    [20]

    Zhang K S, Luo W B, Zeng X H, Huang S T, Xie Q, Wan L M, Shuai Y, Wu C H, Zhang W L 2022 IEEE Sensor. J. 22 10381Google Scholar

    [21]

    Suen J Y, Fan K, Montoya J, Bingham C, Padilla W J 2017 Optica 4 276Google Scholar

    [22]

    Tan X C, Li J Y, Yang A, Liu H, Yi F 2018 Conference on Lasers and Electro-Optics (CLEO) San Jose Convention Center, United States, May, 13–18, 2018 p4

    [23]

    Ranacher C, Consani C, Tortschanoff A, Rauter L, Jakoby B 2019 Sensors 19 2513Google Scholar

    [24]

    Ebrahim S, Elshaer A, Soliman M, Tayl M 2016 Sensor. Actuat. A Phys. 238 389Google Scholar

    [25]

    Han F Y, Liu P K 2020 Adv. Opt. Mater. 8 1901331Google Scholar

    [26]

    Wang B X, Wang G Z, Wang L L, Zhai X 2016 IEEE Photonic. Tech. Lett. 28 307Google Scholar

    [27]

    Guo W L, Dong Z, Xu Y J, Liu C L, Wei D C, Zhang L B, Shi X Y, Guo C, Xu H, Chen G, Wang L, Zhang K, Chen X S, Lu W 2020 Adv. Sci. 7 1902699Google Scholar

    [28]

    Rodrigo S G, Martín-Moreno L 2016 Opt. Lett. 41 293Google Scholar

    [29]

    Xia S, Yang D X, Li T, Liu X, Wang J 2014 Opt. Lett. 39 1270Google Scholar

    [30]

    Wu Z R, Wang L, Peng Y T, Young A, Seraphin S, Hao X 2008 J. Appl. Phys. 103 56

    [31]

    Wang Y, Cui Z J, Zhu D Y, Zhang X B, Qian L 2018 Opt. Express 26 15343Google Scholar

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面.  , 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器.  , 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器.  , 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [4] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [5] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器.  , 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [6] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性.  , 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性.  , 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [9] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究.  , 2021, (): . doi: 10.7498/aps.70.20210871
    [10] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性.  , 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [11] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器.  , 2021, (): . doi: 10.7498/aps.70.20211650
    [12] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] 牛青辰, 苟君, 王军, 蒋亚东. 钛圆盘阵列增强微测辐射热计太赫兹波吸收特性.  , 2019, 68(20): 208501. doi: 10.7498/aps.68.20190902
    [14] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器.  , 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [15] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用.  , 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [16] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究.  , 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [17] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [18] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器.  , 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [19] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化.  , 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [20] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱.  , 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
计量
  • 文章访问数:  3695
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-11-20
  • 上网日期:  2022-12-21
  • 刊出日期:  2023-02-20

/

返回文章
返回
Baidu
map