搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低温共烧陶瓷的毫米波-太赫兹基片集成波导过渡结构

滕鲁 喻忠军 朱大立

引用本文:
Citation:

基于低温共烧陶瓷的毫米波-太赫兹基片集成波导过渡结构

滕鲁, 喻忠军, 朱大立

Millimeter wave-terahertz substrate integrated waveguide transition structure based on low temperature co-fired ceramic

Teng Lu, Yu Zhong-Jun, Zhu Da-Li
PDF
HTML
导出引用
  • 在微波电路系统中, 电磁波由一种传输介质进入另一种传输介质所带来的不连续性等问题会极大地影响系统的传输性能, 这一直是设计微波电路所要关注的重点问题. 当电磁波频段进入毫米波和太赫兹频段之后, 如何实现电磁波从金属矩形波导接口到介质基板的高效、低损耗传输, 是实现毫米波太赫兹通信系统的关键所在. 本文设计了一种基于低温共烧陶瓷的基片集成波导-矩形波导过渡结构, 通过阶梯渐变结构来改善传输性能、拓展带宽, 并在此基础上设计了用于馈电网络的一分二过渡结构, 引入空腔结构来降低损耗并拓展带宽. 这两种结构都具有结构简单、易于加工的特点, 可在W波段或D波段实现良好的传输特性, 具备一定的频带普适性. 在频率较高的D波段加工制作了测试基板, 测量了其传输特性以验证该结构的实用性, 其测试结果表明: 该基片集成波导过渡结构可在126—149 GHz或112—139 GHz的频带内实现良好的传输特性; 一分二过渡结构可在132—155 GHz的频带内实现良好的传输特性.
    In a microwave circuit system, the discontinuity caused by electromagnetic wave entering into another transmission medium from one transmission medium will greatly affect the transmission performance of the system, which has always been the focus of microwave circuit design. When the electromagnetic wave band enters into the millimeter wave and terahertz band, how to realize the efficient and low loss transmission of electromagnetic wave from the metal rectangular waveguide interface to the dielectric substrate is the key to the realization of millimeter wave terahertz communication system. Substrate integrated waveguide to rectangular waveguide transition structure is an important structure connecting waveguide interface and planar circuit in millimeter wave and terahertz communication system, and it is the basis of designing planar antenna array. In this paper, a W-band and D-band substrate integrated waveguide to rectangular waveguide transition structure is designed, which improves the transmission performance and expands the bandwidth through the stepped structure. On this basis, a one-in-two divider structure is designed, with an empty cavity structure used to reduce the loss and expand the bandwidth. These two structures have the characteristics of simple structure and easy processing, and their practicalities are verified by simulation optimization and actual low temperature co-fired ceramic substrate processing and assembly test. The actual test results show that the substrate integrated waveguide to rectangular waveguide transition structure can achieve a return loss of less than –10 dB in a frequency ranges of 126–149 GHz and 112–139 GHz, the one-in-two divider structure can achieve a return loss of less than –10 dB in the frequency band of 132–155 GHz.
      通信作者: 滕鲁, tenglu16@mails.ucas.edu.cn
      Corresponding author: Teng Lu, tenglu16@mails.ucas.edu.cn
    [1]

    Wang J, Hao Z C, Kui-Kui F 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) Chengdu, China, July 20–22, 2016 pp1–3

    [2]

    Song H J 2017 Proc. IEEE 105 1121Google Scholar

    [3]

    Xu R, Gao S, Izquierdo B S, Gu C, Reynaert P, Standaert A, Gibbons G J, Bösch W, Gadringer M E, Li D 2020 IEEE Access 8 57615Google Scholar

    [4]

    李皓 2005 博士学位论文 (南京: 东南大学)

    Li H 2005 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese)

    [5]

    潘俊 2018 硕士学位论文 (成都: 电子科技大学)

    Pan J 2018 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [6]

    张帆 2010 硕士学位论文 (长沙: 国防科学技术大学)

    Zhang F 2010 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [7]

    Mohamed I, Sebak A 2018 IEEE Microw. Wirel. Compon. Lett. 28 966Google Scholar

    [8]

    Abdel-Wahab W, Ehsandar A, Al-Saedi H, Safavi-Naeini S 2016 Electron. Lett. 52 1465Google Scholar

    [9]

    Abdel-Wahab W M, Safavi-Naeini S 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Atlanta, Georgia, USA, July 7–12, 2019 pp963–964

    [10]

    Li Y, Luk K 2014 IEEE Microw. Wirel. Compon. Lett. 24 590Google Scholar

    [11]

    Zhang D, Xu Z, Xiao Y, Sun H 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP) Xi’an, China, October 16–19 2017 pp1–3

    [12]

    Dai X 2016 IEEE Microw. Wirel. Compon. Lett. 26 897Google Scholar

    [13]

    Cao B, Wang H, Huang Y, Wang J, Sheng W 2013 IEEE Microw. Wirel. Compon. Lett. 23 572Google Scholar

    [14]

    Hansen S, Pohl N 2019 49th European Microwave Conference (EuMC) Paris, France, October 1–3, 2019 pp352–355

    [15]

    Karki S K, Ala-Laurinaho J, Zheng J, Lahti M, Viikari V 2019 16 th European Radar Conference (EuRAD) Paris Expo Porte de Versailles, France, October 2–4, 2019 pp321–324

    [16]

    Abuzaid H, Doghri A, Wu K, Shamim A 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) Seattle, WA, USA, June 2–7, 2013 pp1–3

    [17]

    Zhang T, Li L, Zhu Z, Cui T J 2019 IEEE Microw. Wirel. Compon. Lett. 29 532Google Scholar

    [18]

    Bu S, Jin H, Wang W, Luo G, Chin K S 2019 IEEE MTT-S International Wireless Symposium (IWS) Guangzhou, China, May 19–22, 2019 pp1–3

    [19]

    Esteban H, Belenguer A, Sánchez J R, Bachiller C, Boria V E 2017 IEEE Microw. Wirel. Compon. Lett. 27 685Google Scholar

    [20]

    Parment F, Ghiotto A, Vuong T P, Carpentier L, Wu K 2017 IEEE MTT-S International Microwave Symposium (IMS) Honololu, HI, USA, June 4–9, 2017 pp719–722

    [21]

    Isapour A, Kouki A 2019 IEEE Trans. Microw. Theory 67 868Google Scholar

    [22]

    Tajima T, Song H, Yaita M 2016 IEEE Trans. Microw. Theory 64 106Google Scholar

    [23]

    Hansen S, Kueppers S, Pohl N 2018 48th European Microwave Conference (EuMC) Madrid, Spain, September 23–27, 2018 pp117–120

    [24]

    赵发举 2020 硕士学位论文 (成都: 电子科技大学)

    Zhao F J 2020 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [25]

    Tran T H, Hirokawa J 2011 International Conference on Advanced Technologies for Communications (ATC 2011) Da Nang, Vietnam, August 2–4, 2011 pp187–190

  • 图 1  SIW的典型结构

    Fig. 1.  Typical structure of SIW.

    图 2  SIW-RWG的垂直过渡结构 (a)结构模型; (b)电场传输示意图

    Fig. 2.  Schematic diagram of vertical transition structure of SIW-RWG: (a) Structural model; (b) schematic diagram of electric field transmission

    图 3  D波段SIW-RWG过渡结构 (a)仿真模型; (b)展开视图

    Fig. 3.  D-band SIW-RWG transition structure: (a) Simulation model; (b) expanded view.

    图 4  D波段SIW-RWG过渡结构的仿真结果 (a) 回波损耗S11; (b) 插入损耗S21

    Fig. 4.  Simulation results of D-band SIW-RWG transition structure: (a) Return loss S11; (b) insertion loss S21.

    图 5  W波段SIW-RWG过渡结构 (a) 结构模型; (b) 回波损耗S11仿真结果

    Fig. 5.  W-band SIW-RWG transition structure: (a) Structural model; (b) simulation results of return loss S11.

    图 6  ESIW的典型结构[24]  (a) 俯视图; (b) 结构图

    Fig. 6.  Typical structure of ESIW[24]: (a) Top view; (b) structural view.

    图 7  D波段一分二过渡结构 (a)仿真模型; (b)展开视图

    Fig. 7.  D-band one to two divider transition structure: (a) Simulation model; (b) expanded view.

    图 8  D波段一分二过渡结构的仿真结果 (a) 回波损耗S11; (b) 插入损耗S21

    Fig. 8.  Simulation results of D-band one to two divider transition structure: (a) Return loss S11; (b) insertion loss S21

    图 9  W波段一分二过渡结构 (a) 仿真结构模型; (b) 仿真结果回波损耗S11

    Fig. 9.  W-band one to two divider transition structure: (a) Structural model of simulation; (b) simulation results of return loss S11.

    图 10  SIW-RWG过渡结构的测试基板模型

    Fig. 10.  Test substrate model of SIW-RWG transition structure.

    图 11  SIW-RWG过渡结构测试基板模型的仿真结果 (a) 回波损耗S11; (b) 插入损耗S21

    Fig. 11.  Simulation results of test substrate model of SIW-RWG transition structure: (a) Return loss S11; (b) insertion loss S21.

    图 12  另一组参数得到的测试基板模型的仿真结果

    Fig. 12.  Simulation results of the test substrate model with another set of parameters.

    图 13  一分二过渡结构的测试基板模型

    Fig. 13.  Test substrate model of one to two divider transition structure.

    图 14  一分二过渡结构测试基板模型的仿真结果 (a) 回波损耗S11; (b) 插入损耗S21

    Fig. 14.  Simulation results of test substrate model of one to two divider transition structure: (a) Return loss S11; (b) insertion loss S21.

    图 15  为实际测试所设计的波导转接件

    Fig. 15.  Waveguide adapter designed for practical test.

    图 16  测试所用的LTCC基板

    Fig. 16.  LTCC substrate for test.

    图 17  波导转接件实物图

    Fig. 17.  Actual diagram of waveguide adapter.

    图 18  粘接了导电胶膜的波导转接件和待粘接的LTCC基板

    Fig. 18.  Waveguide adapter bonded with conductive adhesive film and LTCC substrate.

    图 19  SIW-RWG过渡结构和一分二过渡结构实测场景

    Fig. 19.  Measured scenes of SIW-RWG transition structure and one to two divider transition structure.

    图 20  SIW-RWG过渡结构测试结果(模型参数取值与图11相对应)

    Fig. 20.  Test results of SIW-RWG transition structure (Values of the model parameters correspond to Fig. 11)

    图 21  SIW-RWG过渡结构测试结果(模型参数取值与图12相对应)

    Fig. 21.  Test results of SIW-RWG transition structure (Values of the model parameters correspond to Fig. 12)

    图 22  一分二过渡结构测试结果

    Fig. 22.  Test results of one to two divider transition structure.

    Baidu
  • [1]

    Wang J, Hao Z C, Kui-Kui F 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) Chengdu, China, July 20–22, 2016 pp1–3

    [2]

    Song H J 2017 Proc. IEEE 105 1121Google Scholar

    [3]

    Xu R, Gao S, Izquierdo B S, Gu C, Reynaert P, Standaert A, Gibbons G J, Bösch W, Gadringer M E, Li D 2020 IEEE Access 8 57615Google Scholar

    [4]

    李皓 2005 博士学位论文 (南京: 东南大学)

    Li H 2005 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese)

    [5]

    潘俊 2018 硕士学位论文 (成都: 电子科技大学)

    Pan J 2018 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [6]

    张帆 2010 硕士学位论文 (长沙: 国防科学技术大学)

    Zhang F 2010 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [7]

    Mohamed I, Sebak A 2018 IEEE Microw. Wirel. Compon. Lett. 28 966Google Scholar

    [8]

    Abdel-Wahab W, Ehsandar A, Al-Saedi H, Safavi-Naeini S 2016 Electron. Lett. 52 1465Google Scholar

    [9]

    Abdel-Wahab W M, Safavi-Naeini S 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Atlanta, Georgia, USA, July 7–12, 2019 pp963–964

    [10]

    Li Y, Luk K 2014 IEEE Microw. Wirel. Compon. Lett. 24 590Google Scholar

    [11]

    Zhang D, Xu Z, Xiao Y, Sun H 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP) Xi’an, China, October 16–19 2017 pp1–3

    [12]

    Dai X 2016 IEEE Microw. Wirel. Compon. Lett. 26 897Google Scholar

    [13]

    Cao B, Wang H, Huang Y, Wang J, Sheng W 2013 IEEE Microw. Wirel. Compon. Lett. 23 572Google Scholar

    [14]

    Hansen S, Pohl N 2019 49th European Microwave Conference (EuMC) Paris, France, October 1–3, 2019 pp352–355

    [15]

    Karki S K, Ala-Laurinaho J, Zheng J, Lahti M, Viikari V 2019 16 th European Radar Conference (EuRAD) Paris Expo Porte de Versailles, France, October 2–4, 2019 pp321–324

    [16]

    Abuzaid H, Doghri A, Wu K, Shamim A 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) Seattle, WA, USA, June 2–7, 2013 pp1–3

    [17]

    Zhang T, Li L, Zhu Z, Cui T J 2019 IEEE Microw. Wirel. Compon. Lett. 29 532Google Scholar

    [18]

    Bu S, Jin H, Wang W, Luo G, Chin K S 2019 IEEE MTT-S International Wireless Symposium (IWS) Guangzhou, China, May 19–22, 2019 pp1–3

    [19]

    Esteban H, Belenguer A, Sánchez J R, Bachiller C, Boria V E 2017 IEEE Microw. Wirel. Compon. Lett. 27 685Google Scholar

    [20]

    Parment F, Ghiotto A, Vuong T P, Carpentier L, Wu K 2017 IEEE MTT-S International Microwave Symposium (IMS) Honololu, HI, USA, June 4–9, 2017 pp719–722

    [21]

    Isapour A, Kouki A 2019 IEEE Trans. Microw. Theory 67 868Google Scholar

    [22]

    Tajima T, Song H, Yaita M 2016 IEEE Trans. Microw. Theory 64 106Google Scholar

    [23]

    Hansen S, Kueppers S, Pohl N 2018 48th European Microwave Conference (EuMC) Madrid, Spain, September 23–27, 2018 pp117–120

    [24]

    赵发举 2020 硕士学位论文 (成都: 电子科技大学)

    Zhao F J 2020 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [25]

    Tran T H, Hirokawa J 2011 International Conference on Advanced Technologies for Communications (ATC 2011) Da Nang, Vietnam, August 2–4, 2011 pp187–190

  • [1] 王晓艺, 王希, 王俊, 程德强, 王悦. V2O5-Al2O3助烧剂对低温烧结Li-Zn微波铁氧体性能的影响.  , 2023, 72(3): 037501. doi: 10.7498/aps.72.20221723
    [2] 孙远昆, 郭良浩, 王凯程, 王少萌, 宫玉彬. 太赫兹波对钾离子通道蛋白二级结构影响的分子动力学模拟.  , 2021, 70(24): 248701. doi: 10.7498/aps.70.20211725
    [3] 关晓通, 傅文杰, 鲁钝, 杨同斌, 鄢扬, 袁学松. 双共焦波导结构二次谐波太赫兹回旋管谐振腔设计.  , 2020, 69(6): 068401. doi: 10.7498/aps.69.20191222
    [4] 王成, 赵俊明, 姜田, 冯一军. 基于场变换的毫米波半波片设计.  , 2018, 67(7): 070201. doi: 10.7498/aps.67.20171774
    [5] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响.  , 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [6] 周攀钒, 袁欢, 徐小楠, 鹿轶红, 徐明. 过渡金属与F共掺杂ZnO薄膜结构及磁、光特性.  , 2015, 64(24): 247503. doi: 10.7498/aps.64.247503
    [7] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究.  , 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [8] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制.  , 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [9] 胡晓堃, 李江, 李贤, 陈耘辉, 栗岩锋, 柴路, 王清月. 太赫兹波发射晶体的亚波长微棱锥增透结构的设计与实验研究.  , 2013, 62(6): 060701. doi: 10.7498/aps.62.060701
    [10] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究.  , 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [11] 高嵩, 裴丽, 宁提纲, 祁春慧, 刘观辉, 李晶. 光自差法生成微波/毫米波技术中偏振失谐研究.  , 2012, 61(12): 124204. doi: 10.7498/aps.61.124204
    [12] 陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼. 基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波.  , 2012, 61(9): 094209. doi: 10.7498/aps.61.094209
    [13] 向军, 郭银涛, 周广振, 褚艳秋. 碱土和过渡金属掺杂NdAlO3导电陶瓷的制备、结构与电性能研究.  , 2012, 61(22): 227201. doi: 10.7498/aps.61.227201
    [14] 崔广斌, 苗俊刚, 张勇芳. 亚毫米波段波导阵列结构频率选择性滤波器的设计.  , 2012, 61(22): 224102. doi: 10.7498/aps.61.224102
    [15] 马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫. 毫米波在等离子体中的衰减特性研究.  , 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [16] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射.  , 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [17] 张玉萍, 张会云, 耿优福, 谭晓玲, 姚建铨. 太赫兹波在有限电导率金属空芯波导中的传输特性.  , 2009, 58(10): 7030-7033. doi: 10.7498/aps.58.7030
    [18] 冯鹤, 谢拥军, 王元源, 傅焕展, 雷斐然. 基于低温共烧陶瓷工艺的一种新型层叠式多层结构的波概念迭代方法研究.  , 2009, 58(7): 4590-4597. doi: 10.7498/aps.58.4590
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 冯全源. 高取向度的毫米波锶钙六角多晶铁氧体.  , 2002, 51(11): 2612-2616. doi: 10.7498/aps.51.2612
计量
  • 文章访问数:  4675
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-02-07
  • 上网日期:  2022-03-01
  • 刊出日期:  2022-06-05

/

返回文章
返回
Baidu
map