-
利用波束成形或L形传感器簇方法对板类结构上的损伤进行定位时存在盲区。本文结合波束成形与L形传感器簇定位方法,通过将五个传感器排列成扇形的方式,提出了一种扇形传感器簇损伤定位方法,可以有效减少损伤定位盲区。使用两组扇形传感器簇以及一个用于发射激励信号的传感器即可准确检测出板中损伤的位置。通过仿真和实验验证了扇形传感器簇损伤定位方法的可行性,并与采用T形传感器簇时的预测结果进行了比较,结果表明扇形传感器簇损伤定位方法可以更准确地识别不同位置的损伤。仿真和实验结果表明,扇形传感器簇损伤定位方法可以减少损伤定位盲区,提高损伤定位的精度。Plate structures are widely applied in large-scale engineering fields such as aerospace, hull manufacturing, and construction. However, the plate structure is easily damaged during long-term service or when it is impacted by foreign objects. Such damage may lead to serious safety accidents.
Beamforming and L-shaped sensor cluster (LSSC) localization method can be used to locate the damage on the plate, when using beamforming or LSSC localization method to locate damages on plate-like structures, there exist blind area.
In this paper, by combining the beamforming and LSSC localization method, a fan-shaped sensor cluster localization method is proposed through arranging five sensors in a fan shape, which can effectively reduce the blind area. The positions of damages in the plate can be accurately detected by using two groups of fan-shaped sensor clusters and one sensor for transmitting the excitation signal. The feasibility of the fan-shaped sensor cluster localization method is verified through numerical simulations and experiments, and the results are compared with those obtained when using the T-shaped sensor cluster. The results show that the fan-shaped sensor cluster positioning method can more accurately identify damages at different positions. Both simulation and experimental results indicate that the fan-shaped sensor cluster localization method can reduce the blind area and improve the accuracy of damage location. -
[1] Hu H F 2011Ph.D. Dissertation(Changsha:National University of Defense Technology)(in Chinese)[胡海峰2011博士学位论文(长沙:国防科学技术大学)]
[2] Ran Q F 1999、21 75(in Chinese)[冉启芳1999无损检测21 75]
[3] Wu G H, Xiong H J 2016Chin. J. Sci. Instrum. 37 1683(in Chinese)[邬冠华,熊鸿建2016仪器仪表学报37 1683]
[4] Ma G, Jia H D, Lu C Y, Chen L X, Zhang G Z, Zhang L P, Yang C 2019Nondestr. Test 41 62(in Chinese)[马国,贾华东,卢长煜,陈理想,张贵芝,张立平,杨超2019无损检测41 62]
[5] Zhao J L 2017Ph.D. Dissertation (Nanjing:Nanjing University of Aeronautics and Astronautics)(in Chinese)[赵金玲2017博士学位论文(南京:南京航空航天大学)]
[6] Sun M J, Liu T, Cheng X Z, Chen D Y, Yan F G, Feng N Z 2016Acta Phys. Sin. 65 167802(in Chinese)[孙明健,刘婷,程星振,陈德应,闫锋刚,冯乃章2016 65 167802]
[7] Humeida Y, Wilcox P D, Todd M D 2014NDT& E Int. 68 43
[8] Luo K, Liu Y J, Liang W 2024NDT& E Int. 143 103047
[9] Chen S J, Zhou S P, Li Y, Xiang Y X, Qi M X 2017Chin. Phys. Lett. 34044301
[10] Wang Q, Yuan S F 2008Acta Aeronaut. Astronaut. Sin. 291061(in Chinese)[王强,袁慎芳2008航空学报571061]
[11] Liu Z H, Xu Y Z, He C F, Wu B 2014Eng. Mech. 31 232(in Chinese)[刘增华,徐营赞,何存富,吴斌2014工程力学31 232]
[12] Zhang H Y, Sun X L, Cao Y P, Chen X H, Yu J B 2010Acta Phys. Sin. 59 7111(in Chinese)[张海燕,孙修立,曹亚萍,陈先华,于建波2010 59 7111]
[13] Zhang G D, Kundu T, Deymier P A, Runge K 2025 Ultrasonics 145 107492
[14] Xu C B, Wang Q, Gao Q J, Deng M X 2025Mech. Syst. Signal Proc. 223 11926
[15] Zhang H Y, Yang J, Fan G P, Zhu W F, Chai X D 2017Acta Phys. Sin. 66 214301(in Chinese)[张海燕,杨杰,范国鹏,朱文发,柴晓冬2017 66 214301]
[16] Ambrozinski L, Stepinski T, Uhl T, Ochonski J, Klepka A 2012Key Eng. Mater. 518 87
[17] Yang Y X, Sun C, Yan S F, Ma Y L,Xiao G Y 2003Acta Acust. 28 504(in Chinese)[杨益新,孙超,鄢社锋,马远良,肖国有2003声学学报28 504]
[18] McLaskey G C, Glaser S D, Grosse C U 2010J. Sound Vib. 329 2384
[19] Wang W Q, Shao H Z 2014IEEE J. Sel. Top. Signal Process. 8 106.
[20] Cantero C S, Aranguren G, M.K. Malik M K, Etxaniz J, Martín de la Escalera F 2020Sensors 20 1445
[21] He T, Pan Q, Liu Y G, Liu X D, Hu D Y 2012Ultrasonics 52 587
[22] Li L, Yang K, Bian X Y, Liu Q H, Yang Y Z, Ma F Y 2019Sensors 19 3152
[23] Zhang Z H, Zhong Y T, Xiang J W, Jiang Y Y, Wang Z L 2020IEEE Sens J. 20 14932
[24] Jung H K, Zhou S J, Park G 2018J. Intell. Mater. Syst. Struct.30351
[25] Wang Z L, Yuan S F, Qiu L, Liu B 2015JVE. 17 2338
[26] Zhong Y T, Xiang J W 2019Smart. Struct. Syst. 24 173
[27] Yu L, Giurgiutiu V 2008Ultrasonics 48 117
[28] Kundu T 2012Struct. Health. Monit. 1 37
[29] Kundu T, Nakatani H, Takeda N 2012Ultrasonics 52 74
[30] Ma C N, Zhou Z X, Liu J X, Cui Z W, Kundu T 2023Ultrasonics 132107020
[31] Yin S X, Cui Z W, Kundu T 2018Ultrasonics 84 34
[32] Yin S X, Xiao H P, Xu C B, Wang J S, Deng M X, Kundu T 2022Ultrasonics 124 106770
[33] Sen N, Gawroński M, Packo P, Uhl T, Kundu T 2021Mech. Syst. Signal Proc. 153 107489
[34] Zhou Z X, Cui Z W, Liu J X, Kundu T 2023Eng. Fract. Mech. 277 108995
[35] Gao Q, Jeon J Y, G. Park G, Kong Y, Shen Y D, Xiang J W 2021J. Intell. Mater. Syst. Struct. 33 1028
[36] Gao Q, Jeon J Y, Park G, Shen Y D, Xiang J W 2021Struct. Health. Monit. 21 451
[37] Gao Q, Jeon J Y, Xiang J W, Park G 2023IEEE Sens. J. 23 2970
[38] Xue C R, Xu G, Wang X K, Gao J C, Gao D J 2021Ultrasonics 115 106438
计量
- 文章访问数: 43
- PDF下载量: 1
- 被引次数: 0