搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扇形传感器簇的板结构损伤定位方法

韩悦 马晨宁 刘金霞 周子贤 阎守国 崔志文

引用本文:
Citation:

基于扇形传感器簇的板结构损伤定位方法

韩悦, 马晨宁, 刘金霞, 周子贤, 阎守国, 崔志文

Fan-shaped sensor clusters based damage detection method of plate structure

HAN Yue, MA Chenning, LIU Jinxia, ZHOU Zixian, YAN Shouguo, CUI Zhiwen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用波束成形或L形传感器簇方法对板类结构上的损伤进行定位时存在盲区. 本文结合波束成形与L形传感器簇定位方法, 通过将5个传感器排列成扇形的方式, 提出了一种扇形传感器簇损伤定位方法, 可以有效减少损伤定位盲区. 使用两组扇形传感器簇以及一个用于发射激励信号的传感器即可准确检测出板中损伤的位置. 通过仿真和实验验证了扇形传感器簇损伤定位方法的可行性, 并与采用T形传感器簇时的预测结果进行比较, 结果表明扇形传感器簇损伤定位方法可以更准确地识别不同位置的损伤. 仿真和实验结果表明, 扇形传感器簇损伤定位方法可以减少损伤定位盲区, 提高损伤定位的精度.
    Plate structures are widely used in large-scale engineering fields such as aerospace, hull manufacturing, and construction. However, the plate structure is easily damaged during long-term service or when it is impacted by foreign objects. Such a damage may lead to serious safety accidents.Beamforming and L-shaped sensor cluster (LSSC) localization method can be used to locate the damage on the plate, however, when using beamforming method or LSSC localization method to locate the damages on plate-like structures, there exists blind area.In this paper, by combining the beamforming method and LSSC localization method, a fan-shaped sensor cluster localization method is proposed through arranging five sensors in a fan shape, which can effectively reduce the blind areas. The positions of damages in the plate can be accurately detected by using two groups of fan-shaped sensor clusters and one sensor for transmitting the excitation signal. The feasibility of the fan-shaped sensor cluster localization method is verified through numerical simulations and experiments, and the results are compared with those obtained by using the T-shaped sensor cluster. The results show that the fan-shaped sensor cluster positioning method can more accurately identify the damages at different positions. Both simulation and experimental results indicate that the fan-shaped sensor cluster localization method can reduce the blind area and improve the accuracy of damage location.
  • 图 1  扇形传感器簇示意图

    Fig. 1.  Schematic diagram of a fan-shaped sensor cluster.

    图 2  初步预测结果图 (a)实际角度为80°的预测结果; (b)实际角度为5°时的预测结果

    Fig. 2.  Schematic diagram of initial forecast results: (a) Prediction of an actual DOA of 80°; (b) the prediction of an actual DOA of 5°.

    图 3  2 mm厚铝板相速度频散曲线

    Fig. 3.  Phase velocity dispersion curves of an aluminum plate with a thickness of 2 mm.

    图 4  2 mm厚铝板的群速度频散曲线

    Fig. 4.  Group velocity dispersion curves of an aluminum plate with a thickness of 2 mm.

    图 5  仿真中传感器布局示意图

    Fig. 5.  Schematic diagram of sensors layout in the simulation.

    图 6  t = 70 μs的波场快照(损伤位于(100, –45))

    Fig. 6.  Wavefield snapshot at t = 70 μs (the damage is located at (100, –45)).

    图 7  (a)损伤位于(100, –45)时, 传感器S1接收到的损伤信号与无损时的基线信号对比; (b)利用传感器S1接收到的有损信号减去基线信号得到的差值信号

    Fig. 7.  (a) Damaged signal and the healthy signal received by the S1 when the damage is located at (100, –45); (b) the differential signal obtained by subtracting the healthy signal from the damaged signal received by the sensor S1.

    图 8  仿真定位结果示意图 (a) T形传感器簇定位结果; (b)扇形传感器簇定位结果

    Fig. 8.  Schematic diagram of simulation localization results: (a) Localization results of T-shaped sensor cluster; (b) localization results of fan-shaped sensor cluster.

    图 9  (a)实验装置示意图; (b) OLYMPUS 5800脉冲信号发射器; (c)实验中使用示波器接收到的信号; (d) AE144S传感器

    Fig. 9.  (a) Photo of the experimental setup; (b) OLYMPUS 5800 pulse signal transmitter; (c) the signal received by the oscilloscope in the experiment; (d) AE144S sensor.

    图 10  (a)损伤位于(105, –10)时, 下方扇形传感器簇中的S3接收到的损伤信号与无损时的基线信号对比; (b)经过滤波后, 利用传感器S3接收到的有损信号减去基线信号得到的差值信号

    Fig. 10.  (a) Damaged aluminum signal and the healthy aluminum signal received by the S3 of the fan-shaped sensor cluster on the lower side when the damage is located at (105, –10); (b) the differential signal obtained by subtracting the healthy signal from the damaged signal received by the sensor S3 after filtering.

    图 11  实验定位结果示意图 (a) T形传感器簇定位结果; (b)扇形传感器簇定位结果

    Fig. 11.  Schematic diagram of experimental localization results: (a) Localization results of T-shaped sensor cluster; (b) localization results of fan-shaped sensor cluster.

    表 1  铝板材料属性

    Table 1.  Material parameters of aluminum plate.

    材料属性数值
    密度$\rho $/(kg·m–3)2700
    泊松比$\sigma $0.33
    杨氏模量E/GPa70
    下载: 导出CSV

    表 2  传感器的位置坐标

    Table 2.  Coordinates of sensors.

    传感器标记 坐标/mm 传感器标记 坐标/mm
    S1 (–10.00, –50.00) S6 (–10.00, 50.00)
    S2 (0.00, –50.00) S7 (0.00, 50.00)
    S3 (10.00, –50.00) S8 (10.00, 50.00)
    S4 (7.07, –42.93) S9 (–7.07, 57.07)
    S5 (7.07, –57.07) S10 (–7.07, 42.93)
    下载: 导出CSV

    表 3  仿真定位结果与误差

    Table 3.  Simulation localization results and errors.

    编号 实际损伤坐标/mm T形传感器簇 扇形传感器簇
    预测损伤坐标/mm 误差/mm 预测损伤坐标/mm 误差/mm
    D1 (46.00, 123.00) (45.93, 125.16) 2.16 (46.29, 125.73) 2.75
    D2 (–90.00, 20.00) (–75.34, 11.45) 16.97 (–94.02, 24.28) 5.87
    D3 (130.00, 60.00) (133.83, 70.07) 10.77 (133.48, 64.39) 5.61
    D4 (30.00, –100.00) (34.30, –107.32) 8.49 (32.96, –105.08) 5.88
    D5 (–60.00, –60.00) (–54.31, –63.35) 9.27 (–54.58, –56.65) 6.37
    D6 (105.00, –10.00) (93.94, –6.28) 11.67 (105.19, –6.87) 3.14
    D7 (–35.00, 115.00) (–35.72, 118.03) 3.11 (–33.22, 113.27) 2.48
    D8 (100.00, –45.00) (84.55, –33.09) 19.51 (97.29, –44.28) 2.80
    下载: 导出CSV

    表 4  实验定位结果与误差

    Table 4.  Experimental localization results and errors.

    编号 实际损伤坐标/mm T形传感器簇 扇形传感器簇
    预测损伤坐标/mm 误差/mm 预测损伤坐标/mm 误差/mm
    D1 (46.00, 123.00) (42.39, 115.11) 8.68 (43.22, 114.82) 8.64
    D2 (–90.00, 20.00) (–106.88, 22.25) 17.03 (–96.76, 20.04) 6.76
    D3 (130.00, 60.00) (141.36, 66.56) 13.12 (124.69, 56.48) 6.37
    D4 (30.00, –100.00) (29.52, –97.61) 2.44 (31.51, –103.49) 3.80
    D5 (–60.00, –60.00) (–65.45, –60.33) 5.46 (–65.40, –60.12) 5.40
    D6 (105.00, –10.00) (94.63, –12.02) 10.56 (111.13, –14.78) 7.77
    D7 (–35.00, 115.00) (–36.40, 121.49) 6.64 (–40.94, 119.23) 7.29
    D8 (100.00, –45.00) (90.54, –33.69) 14.74 (106.07, –47.88) 6.72
    下载: 导出CSV
    Baidu
  • [1]

    胡海峰 2011 博士学位论文 (长沙: 国防科学技术大学)

    Hu H F 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [2]

    冉启芳 1999 无损检测 21 75

    Ran Q F 1999 Nondestr. Test 21 75

    [3]

    邬冠华, 熊鸿建 2016 仪器仪表学报 37 1683Google Scholar

    Wu G H, Xiong H J 2016 Chin. J. Sci. Instrum. 37 1683Google Scholar

    [4]

    马国, 贾华东, 卢长煜, 陈理想, 张贵芝, 张立平, 杨超 2019 无损检测 41 62Google Scholar

    Ma G, Jia H D, Lu C Y, Chen L X, Zhang G Z, Zhang L P, Yang C 2019 Nondestr. Test 41 62Google Scholar

    [5]

    赵金玲 2017 博士学位论文 (南京: 南京航空航天大学)

    Zhao J L 2017 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics

    [6]

    孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章 2016 65 167802Google Scholar

    Sun M J, Liu T, Cheng X Z, Chen D Y, Yan F G, Feng N Z 2016 Acta Phys. Sin. 65 167802Google Scholar

    [7]

    Humeida Y, Wilcox P D, Todd M D 2014 NDT E Int. 68 43Google Scholar

    [8]

    Luo K, Liu Y J, Liang W 2024 NDT & E Int. 143 103047

    [9]

    Chen S J, Zhou S P, Li Y, Xiang Y X, Qi M X 2017 Chin. Phys. Lett. 34 044301Google Scholar

    [10]

    王强, 袁慎芳 2008 航空学报 29 1061Google Scholar

    Wang Q, Yuan S F 2008 Acta Aeronaut. Astronaut. Sin. 29 1061Google Scholar

    [11]

    刘增华, 徐营赞, 何存富, 吴斌 2014 工程力学 31 232Google Scholar

    Liu Z H, Xu Y Z, He C F, Wu B 2014 Eng. Mech. 31 232Google Scholar

    [12]

    张海燕, 孙修立, 曹亚萍, 陈先华, 于建波 2010 59 7111Google Scholar

    Zhang H Y, Sun X L, Cao Y P, Chen X H, Yu J B 2010 Acta Phys. Sin. 59 7111Google Scholar

    [13]

    Zhang G D, Kundu T, Deymier P A, Runge K 2025 Ultrasonics 145 107492Google Scholar

    [14]

    Xu C B, Wang Q, Gao Q J, Deng M X 2025 Mech. Syst. Signal Proc. 223 11926

    [15]

    张海燕, 杨杰, 范国鹏, 朱文发, 柴晓冬 2017 66 214301Google Scholar

    Zhang H Y, Yang J, Fan G P, Zhu W F, Chai X D 2017 Acta Phys. Sin. 66 214301Google Scholar

    [16]

    Ambrozinski L, Stepinski T, Uhl T, Ochonski J, Klepka A 2012 Key Eng. Mater. 518 87Google Scholar

    [17]

    杨益新, 孙超, 鄢社锋, 马远良, 肖国有 2003 声学学报 28 504Google Scholar

    Yang Y X, Sun C, Yan S F, Ma Y L, Xiao G Y 2003 Acta Acust. 28 504Google Scholar

    [18]

    McLaskey G C, Glaser S D, Grosse C U 2010 J. Sound Vib. 329 2384Google Scholar

    [19]

    Wang W Q, Shao H Z 2014 IEEE J. Sel. Top. Signal Process. 8 106Google Scholar

    [20]

    Cantero C S, Aranguren G, M. K. Malik M K, Etxaniz J, Martín de la Escalera F 2020 Sensors 20 1445

    [21]

    He T, Pan Q, Liu Y G, Liu X D, Hu D Y 2012 Ultrasonics 52 587Google Scholar

    [22]

    Li L, Yang K, Bian X Y, Liu Q H, Yang Y Z, Ma F Y 2019 Sensors 19 3152Google Scholar

    [23]

    Zhang Z H, Zhong Y T, Xiang J W, Jiang Y Y, Wang Z L 2020 IEEE Sens J. 20 14932Google Scholar

    [24]

    Jung H K, Zhou S J, Park G 2018 J. Intell. Mater. Syst. Struct. 30 351

    [25]

    Wang Z L, Yuan S F, Qiu L, Liu B 2015 JVE 17 2338

    [26]

    Zhong Y T, Xiang J W 2019 Smart. Struct. Syst. 24 173

    [27]

    Yu L, Giurgiutiu V 2008 Ultrasonics 48 117Google Scholar

    [28]

    Kundu T 2012 Struct. Health. Monit. 1 37

    [29]

    Kundu T, Nakatani H, Takeda N 2012 Ultrasonics 52 74

    [30]

    Ma C N, Zhou Z X, Liu J X, Cui Z W, Kundu T 2023 Ultrasonics 132 107020Google Scholar

    [31]

    Yin S X, Cui Z W, Kundu T 2018 Ultrasonics 84 34Google Scholar

    [32]

    Yin S X, Xiao H P, Xu C B, Wang J S, Deng M X, Kundu T 2022 Ultrasonics 124 106770Google Scholar

    [33]

    Sen N, Gawroński M, Packo P, Uhl T, Kundu T 2021 Mech. Syst. Signal Proc. 153 107489Google Scholar

    [34]

    Zhou Z X, Cui Z W, Liu J X, Kundu T 2023 Eng. Fract. Mech. 277 108995Google Scholar

    [35]

    Gao Q, Jeon J Y, Park G, Kong Y, Shen Y D, Xiang J W 2021 J. Intell. Mater. Syst. Struct. 33 1028

    [36]

    Gao Q, Jeon J Y, Park G, Shen Y D, Xiang J W 2021 Struct. Health. Monit. 21 451

    [37]

    Gao Q, Jeon J Y, Xiang J W, Park G 2023 IEEE Sens. J. 23 2970Google Scholar

    [38]

    Xue C R, Xu G, Wang X K, Gao J C, Gao D J 2021 Ultrasonics 115 106438Google Scholar

  • [1] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真.  , doi: 10.7498/aps.73.20241246
    [2] 肖圣杰, 林敏, 赵柏, 林志, 程铭. 智能反射面辅助的星地融合网络鲁棒安全波束成形算法.  , doi: 10.7498/aps.71.20212032
    [3] 周子童, 闫韶华, 赵巍胜, 冷群文. 隧穿磁阻传感器研究进展.  , doi: 10.7498/aps.71.20211883
    [4] 冯婕, 崔益豪, 李豫东, 文林, 郭旗. CMOS有源像素传感器辐射损伤对星敏感器星图识别影响机理与识别算法.  , doi: 10.7498/aps.71.20220894
    [5] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性.  , doi: 10.7498/aps.70.20210062
    [6] 孙家程, 王婷婷, 戴洋, 常建华, 柯炜. 基于无芯光纤的多参数测量传感器.  , doi: 10.7498/aps.70.20201474
    [7] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用.  , doi: 10.7498/aps.69.20200987
    [8] 李胜优, 刘镓榕, 文豪, 刘向阳, 郭文熹. 蚕丝基可穿戴传感器的研究进展.  , doi: 10.7498/aps.69.20200818
    [9] 周大方, 张树林, 蒋式勤. 用于心脏电活动成像的空间滤波器输出噪声抑制方法.  , doi: 10.7498/aps.67.20180294
    [10] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器.  , doi: 10.7498/aps.66.218501
    [11] 蒋锐, 杨震. 基于质心迭代估计的无线传感器网络节点定位算法.  , doi: 10.7498/aps.65.030101
    [12] 张海洋, 黄永明, 杨绿溪. 无线携能通信系统中基于能量获取比例公平的波束成形设计.  , doi: 10.7498/aps.64.028402
    [13] 李欣, 王禄娜, 郭士亮, 李志全, 杨明. 温度测量范围加倍的单微环传感器.  , doi: 10.7498/aps.63.154209
    [14] 郝本建, 李赞, 万鹏武, 司江勃. 传感器网络基于特征值分解的信号被动定位技术.  , doi: 10.7498/aps.63.054304
    [15] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究.  , doi: 10.7498/aps.62.124207
    [16] 赵龙, 颜廷君. 不同传感器精度下的地磁轮廓匹配定位性能分析.  , doi: 10.7498/aps.62.067702
    [17] 王亚奇, 杨晓元. 一种无线传感器网络簇间拓扑演化模型及其免疫研究.  , doi: 10.7498/aps.61.090202
    [18] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究.  , doi: 10.7498/aps.60.054215
    [19] 李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫. 光纤气体传感器解调方法的研究.  , doi: 10.7498/aps.58.3821
    [20] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器.  , doi: 10.7498/aps.56.308
计量
  • 文章访问数:  221
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-04-13
  • 上网日期:  2025-04-24

/

返回文章
返回
Baidu
map