搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于正六边形多开口的新型双频带左手材料

杨怀 王春华 郭小蓉

引用本文:
Citation:

基于正六边形多开口的新型双频带左手材料

杨怀, 王春华, 郭小蓉

A novel dual-band left-handed metamaterials composed of multi-defects hexagonal structure

Yang Huai, Wang Chun-Hua, Guo Xiao-Rong
PDF
导出引用
  • 本文提出了基于正六边形多开口的新型双频带磁谐振体. 在微波衬底材料的一面放置交错多开口的两个正六边形金属环,多开口结构破坏了环间耦合电容,从而使两环形成相对独立的两个谐振网络实现双频带效应. 最后将该谐振结构的另一面放置金属导线形成一个双频带的新型左手材料. 文中利用HFSS软件仿真和等效参数提取的方法,分析和验证该结构的正确性.
    This paper presents a novel dual-band magnetic resonance with multi-defect hexagonal structure. Staggered defects double hexagonal metal rings was put on a microwave substrate. So the coupling capacity of the two rings was damaged. Then the dual-band magnetic resonance has been obtained. The traditional structure of dual-band is very complicated. But the new structure is simple and the size is also very easy to control. Finally, we combined the novel structure with metal wires to make dual-band left-handed metamaterials. From the result of the HFSS simulation, this left-handed metamaterials has obtained dual-band at 6.5–7.0 GHz and 8.8–9.3 GHz. The dual-band left-handed structure has a great influence on the microwave filter, antenna, and other microwave devices.
    • 基金项目: 国家自然科学基金(批准号:61274020)和湖南省高校重点实验室开放基金(批准号:12K012)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61274020), and the Open Fund Project of Key Laboratory in Hunan Universities of China (Grant No. 12K012).
    [1]

    Shelby R A, Smith D R, Schultz S 2001 Science. 292 77

    [2]

    Seddon N, Bearpark T, 2003 Science. 302 1537

    [3]

    Marta Gil, Jordi Bonache, Joan Garcia-Garcia, Jesus Martel, Ferran Martin 2007 IEEE. Trans. MTT 55 1296

    [4]

    Tang M C, Xiao S Q, Guan J, Bai Y Y, Gao S S, Wang B Z 2010 Chin. Phys. B 19 074214

    [5]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [6]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [7]

    Grzegorczyk T M, Moss C D, Lu J, Chen X D, Pacheco J Jr, Kong J A 2005 IEEE Trans. Microwave Theory Tech. 53 2956

    [8]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红, 罗春荣, 赵晓鹏 2007 56 5883]

    [9]

    Ran L, Huangfu J, Chen H, Li Y, Zhang X, Chen K, Kong J A 2004 Phys. Rev. B 70 073102

    [10]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6078 (in Chinese) [张燕萍, 赵晓鹏, 保石, 罗春荣 2010 59 6078]

    [11]

    Wang S, Guo M S, Chan W 2007 Microwave and Opt Tech. Lett. 49 2726

    [12]

    Li T P, Wang G M, Liang J G, Zhang C X 2012 Acta Phys. Sin. 61 194201 (in Chinese) [李天鹏, 王光明, 梁建刚, 张晨新 2012 61 194201]

    [13]

    Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M, Kong J A 2004 J. Appl. Phys. 96 5338

    [14]

    Zhu W R, Zhao X P, Guo J Q, 2008 Appl. Phys. Lett. 92 241116

    [15]

    Wang J F, Qu S B, Yang Y M, Ma H, Wu X, Xu Z, 2009 Appl. Phys. Lett. 95 014105

    [16]

    Li W Q, Cao X Y, Gao J, Liu T, Yao X, Ma J J 2012 Acta Phys. Sin. 61 154102 (in Chinese) [李文强, 曹祥玉, 高军, 刘涛, 姚旭, 马嘉俊 2012 61 154102]

    [17]

    Liu Y H, Fang S L, Gu S, Zhao X P 2013 Acta Phys. Sin. 62 134102 (in Chinese) [刘亚红, 方石磊, 顾帅, 赵晓鹏 2013 62 134102]

    [18]

    Zhang C M, Sun M Z, Yuan Z L, Song X P 2009 Acta Phys. Sin. 58 1758 (in Chinese) [张淳民, 孙明昭, 袁志林, 宋晓平 2009 58 1758]

    [19]

    Zheng Q, Zhao X P, Li M M, Zhao J 2006 Acta Phys. Sin. 55 6441 (in Chinese) [郑晴, 赵晓鹏, 李明明, 赵晶 2006 55 6441]

    [20]

    Zhao X P, Zhao Q, Zhang F L, Zhao W, Liu Y H 2006 Chin. Phys. Lett. 23 99

    [21]

    Zhang F L, Zhao X P 2007 Acta Phys. Sin. 56 4661 (in Chinese) [张富利, 赵晓鹏 2007 56 4661]

    [22]

    Zhang F L, Zhao Q, Liu Y H, Luo C R, Zhao X P 2004 Chin. Phys. Lett. 21 1330

    [23]

    Smith D R, Vier D C, Koschny Th, Soukoules C M 2005 Phys. Rev. E 71 036617

    [24]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys.Rev. Lett. 76 4773

    [25]

    Caloz C, Itoh T 2005 Electromagnetic Metamaterials: TransmissionLine Theory and Microwave Applications New York: Wiley

    [26]

    Ziolkowski R W 2003 IEEE Trans. Ante. Prop. 51 1516

    [27]

    Szab’o Z, Park G H, Hedge R, Li E P 2010 IEEE Trans. Microwave Theory Tech. 58 2646

  • [1]

    Shelby R A, Smith D R, Schultz S 2001 Science. 292 77

    [2]

    Seddon N, Bearpark T, 2003 Science. 302 1537

    [3]

    Marta Gil, Jordi Bonache, Joan Garcia-Garcia, Jesus Martel, Ferran Martin 2007 IEEE. Trans. MTT 55 1296

    [4]

    Tang M C, Xiao S Q, Guan J, Bai Y Y, Gao S S, Wang B Z 2010 Chin. Phys. B 19 074214

    [5]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [6]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [7]

    Grzegorczyk T M, Moss C D, Lu J, Chen X D, Pacheco J Jr, Kong J A 2005 IEEE Trans. Microwave Theory Tech. 53 2956

    [8]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红, 罗春荣, 赵晓鹏 2007 56 5883]

    [9]

    Ran L, Huangfu J, Chen H, Li Y, Zhang X, Chen K, Kong J A 2004 Phys. Rev. B 70 073102

    [10]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6078 (in Chinese) [张燕萍, 赵晓鹏, 保石, 罗春荣 2010 59 6078]

    [11]

    Wang S, Guo M S, Chan W 2007 Microwave and Opt Tech. Lett. 49 2726

    [12]

    Li T P, Wang G M, Liang J G, Zhang C X 2012 Acta Phys. Sin. 61 194201 (in Chinese) [李天鹏, 王光明, 梁建刚, 张晨新 2012 61 194201]

    [13]

    Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M, Kong J A 2004 J. Appl. Phys. 96 5338

    [14]

    Zhu W R, Zhao X P, Guo J Q, 2008 Appl. Phys. Lett. 92 241116

    [15]

    Wang J F, Qu S B, Yang Y M, Ma H, Wu X, Xu Z, 2009 Appl. Phys. Lett. 95 014105

    [16]

    Li W Q, Cao X Y, Gao J, Liu T, Yao X, Ma J J 2012 Acta Phys. Sin. 61 154102 (in Chinese) [李文强, 曹祥玉, 高军, 刘涛, 姚旭, 马嘉俊 2012 61 154102]

    [17]

    Liu Y H, Fang S L, Gu S, Zhao X P 2013 Acta Phys. Sin. 62 134102 (in Chinese) [刘亚红, 方石磊, 顾帅, 赵晓鹏 2013 62 134102]

    [18]

    Zhang C M, Sun M Z, Yuan Z L, Song X P 2009 Acta Phys. Sin. 58 1758 (in Chinese) [张淳民, 孙明昭, 袁志林, 宋晓平 2009 58 1758]

    [19]

    Zheng Q, Zhao X P, Li M M, Zhao J 2006 Acta Phys. Sin. 55 6441 (in Chinese) [郑晴, 赵晓鹏, 李明明, 赵晶 2006 55 6441]

    [20]

    Zhao X P, Zhao Q, Zhang F L, Zhao W, Liu Y H 2006 Chin. Phys. Lett. 23 99

    [21]

    Zhang F L, Zhao X P 2007 Acta Phys. Sin. 56 4661 (in Chinese) [张富利, 赵晓鹏 2007 56 4661]

    [22]

    Zhang F L, Zhao Q, Liu Y H, Luo C R, Zhao X P 2004 Chin. Phys. Lett. 21 1330

    [23]

    Smith D R, Vier D C, Koschny Th, Soukoules C M 2005 Phys. Rev. E 71 036617

    [24]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys.Rev. Lett. 76 4773

    [25]

    Caloz C, Itoh T 2005 Electromagnetic Metamaterials: TransmissionLine Theory and Microwave Applications New York: Wiley

    [26]

    Ziolkowski R W 2003 IEEE Trans. Ante. Prop. 51 1516

    [27]

    Szab’o Z, Park G H, Hedge R, Li E P 2010 IEEE Trans. Microwave Theory Tech. 58 2646

  • [1] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性.  , 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [2] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体.  , 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [3] 何政蕊, 耿友林. 一种新型宽频带低损耗小单元左手材料的设计与实现.  , 2016, 65(9): 094101. doi: 10.7498/aps.65.094101
    [4] 吴良威, 张正平. 基于多开口田字形宽频带低损耗左手材料.  , 2016, 65(16): 164101. doi: 10.7498/aps.65.164101
    [5] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇. 基于发卡式开口谐振环的柔性双频带超材料.  , 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [6] 刘亚红, 刘辉, 赵晓鹏. 基于小型化结构的各向同性负磁导率材料与左手材料.  , 2012, 61(8): 084103. doi: 10.7498/aps.61.084103
    [7] 李俊成, 郭立新, 刘松华. THz频段单面左手材料的设计及仿真研究.  , 2012, 61(12): 124102. doi: 10.7498/aps.61.124102
    [8] 李文强, 曹祥玉, 高军, 刘涛, 姚旭, 马嘉俊. 基于斜三角开口对环的宽带低耗左手材料.  , 2012, 61(15): 154102. doi: 10.7498/aps.61.154102
    [9] 王海侠, 吕英华, 张洪欣, 吴艳玲. 基于双Z形金属条的双入射型左手材料研究.  , 2011, 60(3): 034101. doi: 10.7498/aps.60.034101
    [10] 弓巧侠, 赵双双, 段智勇, 马凤英. 结构参量对左手材料通带位置影响的研究.  , 2011, 60(10): 107804. doi: 10.7498/aps.60.107804
    [11] 唐明春, 肖绍球, 邓天伟, 王多, 柏艳英, 金大鹏, 王秉中. 一种新颖的变异开口谐振环双频带磁谐振特异材料.  , 2011, 60(6): 064101. doi: 10.7498/aps.60.064101
    [12] 王甲富, 屈绍波, 徐卓, 张介秋, 马华, 杨一鸣, 吴翔, 鲁磊. 基于金属结构单元间耦合的左手材料的设计及实验验证.  , 2010, 59(6): 4018-4022. doi: 10.7498/aps.59.4018
    [13] 郭云胜, 张雪峰. 一种结构简单的二维左手材料设计及仿真研究.  , 2010, 59(12): 8584-8590. doi: 10.7498/aps.59.8584
    [14] 樊京, 蔡广宇. 一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器.  , 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
    [15] 孙明昭, 张淳民, 宋晓平, 梁工英, 孙占波. 基于矩形谐振环的新型复合周期结构左手材料研究.  , 2009, 58(9): 6179-6184. doi: 10.7498/aps.58.6179
    [16] 吴俊芳, 孙明昭, 张淳民. 左手材料的响应频段和单元尺寸关系的研究.  , 2009, 58(6): 3844-3847. doi: 10.7498/aps.58.3844
    [17] 艾 芬, 白 洋, 徐 芳, 乔利杰, 周 济. 基于铁氧体基板的开口谐振环的可调微波左手特性研究.  , 2008, 57(7): 4189-4194. doi: 10.7498/aps.57.4189
    [18] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波.  , 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [19] 张高明, 彭景翠, 翦知渐, 黄小益. 左手材料薄板波导中模式之间的正交关系.  , 2006, 55(4): 1846-1850. doi: 10.7498/aps.55.1846
    [20] 罗春荣, 康 雷, 赵 乾, 付全红, 宋 娟, 赵晓鹏. 非均匀缺陷环对微波左手材料的影响.  , 2005, 54(4): 1607-1612. doi: 10.7498/aps.54.1607
计量
  • 文章访问数:  6398
  • PDF下载量:  595
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-16
  • 修回日期:  2013-09-17
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map