搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质掺杂近零媒质中光场增强效应及其应用

赵林 冯一军

引用本文:
Citation:

介质掺杂近零媒质中光场增强效应及其应用

赵林, 冯一军

Optical field enhancements and applications by epsilon-near-zero medium with dielectric dopant

Zhao Lin, Feng Yi-Jun
PDF
HTML
导出引用
  • 电磁场的汇聚与增强是电磁学中一个重要的研究内容, 具备场汇聚与增强特性的电磁(光学)器件在高方向性电磁天线、激光点火、光学调控等方面有着广泛的应用前景. 目前, 电磁场增强的途径主要有两种, 一是采用构造人工电磁材料结构以实现辐射方向的控制和能量集中, 其次是采用具有高介电常数或高磁导率的材料来实现电磁场增强, 但是上述两种方式应用在光学波段具有一些局限性. 本文基于光子晶体掺杂理论, 通过介质掺杂近零媒质的方式成功实现了光场增强功能. 理论分析和数值仿真计算表明所设计的结构能够显著实现场强增强, 并适用于微波至光波波段, 应用频谱范围很宽. 作为应用探索, 本文还设计了一款工作在270 nm波长的紫外光波段点火装置. 上述工作为新型电磁(光学)器件的研制提供了新的思路.
    Field enhancement is an interesting and important topic in electromagnetic study. Electromagnetic field concentration and enhancement devices have wide applications in high directional antenna design, laser ignition, optical control, etc. At present, there are usually two ways of implementing the field enhancement, one is to use the artificial electromagnetic materials to realize the radiation direction control and energy concentration, which is more suitable for the applications at microwave or lower frequencies, and the other is to use the materials with high permittivity or high permeability. However, the latter is extremely sensitive to the position and characteristic of the radiation source and the cross-sectional area of the material, and depends heavily on the value of the relative permittivity or the relative permeability of the material. Therefore, both methods cannot fully meet the application requirements of creating high field intensity in optical band, such as laser ignition, etc. In this paper, based on the theory of photonic crystal doping, the strong electromagnetic field enhancement has been successfully realized by epsilon-near-zero medium filled with ordinary dielectric dopant. We first make the comprehensive theoretical analysis of the field enhancement in the structure of epsilon-near-zero medium with dielectric dopant. The method of calculating the central magnetic field in the doped medium is then rigorously derived, and the formula for the ratio of the central magnetic field in the doped medium to the external radiation field is deduced. We find that the optimal magnetic field enhancement occurs only when the proposed structure is equivalent to an epsilon-mu-near-zero medium. Subsequently, under the above condition, various parameters (radius of the cylindrical dopant, number of sources, etc.) are studied to analyze the magnetic field enhancement performance inside the doped medium. The theoretical analysis and simulation results show that the proposed structure can significantly enhance the magnetic field which is applicable in a broad frequency band from microwave to optical region, and meets the application requirements of providing high field intensity. Finally, as a practical realization example, an ultraviolet ignition device working at 270 nm is designed, which presents an efficient and alternative way of developing electromagnetic (optical) devices for producing strong field enhancement.
      通信作者: 冯一军, yjfeng@nju.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61671231, 61801207)
      Corresponding author: Feng Yi-Jun, yjfeng@nju.edu.cn
    [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [2]

    Fante R L, McCormack M T 1988 IEEE Trans. Antennas Propag. 36 1443Google Scholar

    [3]

    Yang J, Shen Z 2007 IEEE Antennas Wirel. Propag. Lett. 6 388Google Scholar

    [4]

    Fu W, Liu S, Fan W 2007 J. Magn. Magn. Mater. 316 54Google Scholar

    [5]

    Munk B A 2009 Metamaterials: Critique and Alternatives (New Jersey: John Wiley & Sons) pp160–168

    [6]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740Google Scholar

    [7]

    Li B, Shen Z 2013 IEEE Trans. Microwave Theory Tech. 61 3578Google Scholar

    [8]

    Liu T, Cao X, Gao J 2013 IEEE Tran. Antennas Propag. 61 1479Google Scholar

    [9]

    Li B, Shen Z 2014 IEEE Tran. Antennas Propag. 62 130Google Scholar

    [10]

    Liu Y, Zhao X 2014 IEEE Antennas Wirel. Propag. Lett. 13 1473Google Scholar

    [11]

    Youngworth K S, Brown T G 2000 Opt. Express 7 77Google Scholar

    [12]

    Novotny L, Zurita-Sánchez J R 2002 J. Opt. Soc. Am. B 19 2722Google Scholar

    [13]

    Zhan Q 2009 Adv. Opt. Photonics 1 1Google Scholar

    [14]

    Veysi M, Guclu C, Capolino F 2015 J. Opt. Soc. Am. B 32 345Google Scholar

    [15]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075Google Scholar

    [16]

    Marqués R, Medina F, Rafii-El-Idrissi R 2002 Phys. Rev. B 65 144440Google Scholar

    [17]

    García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz J J 2011 Opt. Express 19 4815Google Scholar

    [18]

    Liberal I, Li Y, Engheta N 2017 Philos. Trans. A 375 20160059Google Scholar

    [19]

    Jin Y, He S 2010 Opt. Express 18 16587Google Scholar

    [20]

    Jin Y, Zhang P, He S L 2010 Phys. Rev. B 81 085117Google Scholar

    [21]

    Zhong S, He S 2013 Sci. Rep. 3 2083Google Scholar

    [22]

    Silveirinha M G, Belov P A 2008 Phys. Rev. B 77 233104Google Scholar

    [23]

    Liu R, Roberts C M, Zhong Y, Podolskiy V A, Wasserman D 2016 ACS Photonics 3 1045Google Scholar

    [24]

    Zhou Z H, Li Y, Li H, Sun W Y, Liberal I, Engheta N 2019 Nat. Commun. 10 4132Google Scholar

    [25]

    Pacheco-Peña V, Engheta N, Kuznetsov S, Gentselev A, Beruete M 2017 Phys. Rev. Appl. 8 034036Google Scholar

    [26]

    Silveirinha M, Engheta N 2007 Phys. Rev. B 75 075119Google Scholar

    [27]

    Xu J, Song G, Zhang Z, Yang Y, Chen H, Zubairy M S, Zhu S 2016 Phys. Rev. B 94 220103Google Scholar

    [28]

    Liu R, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903Google Scholar

    [29]

    Guo Z Y, Wu F, Xue C H, Jiang H T 2018 J. Appl. Phys. 124 103104Google Scholar

    [30]

    Zhang Z F, Xue C H, Jiang H T, Lu H 2013 Appl. Phys. Lett. 103 201902Google Scholar

    [31]

    Liberal I, Mahmoud A, Li Y, Edwards B, Engheta N 2017 Science 355 1058Google Scholar

    [32]

    Wang Z R, Hu T, Tang L W, Ma N, Song C L, Han G R, Weng W J, Du P Y 2008 Appl. Phys. Lett. 93 222901Google Scholar

  • 图 1  ENZ介质掺杂介质结构等效示意图(2D截面) (a) ENZ媒质掺杂介质结构截面图, 存在一个与截面垂直的磁流IM; (b) 具备相同截面大小的等效ENZ介质示意图, 在该截面相同的位置存在一个与图(a)相同的的磁流IM

    Fig. 1.  Schematics of magnetic ENZ medium filled with dielectric dopants: (a) A 2D magnetic ENZ medium with several macroscopic non-magnetic dielectric dopants and an alternating magnetic current IM embedded in the ENZ medium whose magnetic field H1 is polarized along y axis; (b) the equivalent homogeneous 2D ENZ medium with the same cross-sectional shape and near-zero permittivity, but a uniform equivalent relative permeability μeff

    图 2  ENZ媒质介质掺杂后其等效磁导率μeff随掺杂介质半径的变化

    Fig. 2.  Effective relative permeability (μeff) of the doped ENZ medium as a function of the doping rod radius.

    图 3  掺杂介质具有不同半径时, 其内部中心磁场相对外辐射场的磁场增强倍数计算与仿真验证 (a) 掺杂介质内部中心磁场与其半径的关系曲线; (b) 理想点源的磁场仿真结果; (c), (d), (e) 掺杂介质半径分别为rd/λ0 = 0.158, rd/λ0 = 0.363和rd/λ0 = 0.572时掺杂介质ENZ媒质结构的磁场仿真结果

    Fig. 3.  Enhancement factors of internal magnetic field in the dopant compared with external radiation field with the different radius of dopant: (a) Enhancement factors of internal magnetic field in the dopant with different rd; (b) the simulation result of magnetic field of point source in free space; (c), (d), (e) simulation results of magnetic field in ENZ filled with dopant with different radius of dopant (rd/λ0 = 0.15659, 0.35958, 0.56427), respectively.

    图 4  掺杂介质的ENZ媒质结构分别包含单个点源和两个点源时的磁场对比仿真 (a) 掺杂介质的ENZ媒质结构包含单个点源的磁场仿真结果(εr1 = 6, rd/λ0 = 0.158); (b) 在图4(a)结构中再增加一个点源的磁场仿真结果; (c) 调整4(b)结构两个点源位置的磁场仿真结果; (d) 改变图4(c) ENZ媒质截面形状后的磁场仿真结果(点源位置任意调整, ENZ截面积不变)

    Fig. 4.  Simulation results of magnetic field in ENZ medium filled with the dopant containing different point sources, respectively: (a) One point source embedded in the ENZ medium (εr1 = 6, rd/λ0 = 0.158); (b) two point sources embedded in the ENZ medium; (c) two point sources located somewhere in ENZ medium; (d) two point sources embedded in an ENZ square (with the same cross section).

    图 5  265—275 nm紫外光波段点火器件的计算分析与仿真验证 (a) 265—275 nm波段银的相对介电常数以及掺杂介质的银薄膜的等效磁导率计算曲线; (b) 270 nm波长掺杂介质的银薄膜的磁场分布仿真结果

    Fig. 5.  Analysis and simulation of ignition device at wavelength of 270 nm: (a) The relative permittivity of silver film (red line) and the effective relative permeability of silver film filled with dielectric dopant at wavelength of 263 nm to 275 nm (blue line); (b) the simulation result of magnetic field in silver film filled with dielectric dopant at wavelength of 270 nm (rd/λ0 = 0.2261, εrd = 3).

    Baidu
  • [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [2]

    Fante R L, McCormack M T 1988 IEEE Trans. Antennas Propag. 36 1443Google Scholar

    [3]

    Yang J, Shen Z 2007 IEEE Antennas Wirel. Propag. Lett. 6 388Google Scholar

    [4]

    Fu W, Liu S, Fan W 2007 J. Magn. Magn. Mater. 316 54Google Scholar

    [5]

    Munk B A 2009 Metamaterials: Critique and Alternatives (New Jersey: John Wiley & Sons) pp160–168

    [6]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740Google Scholar

    [7]

    Li B, Shen Z 2013 IEEE Trans. Microwave Theory Tech. 61 3578Google Scholar

    [8]

    Liu T, Cao X, Gao J 2013 IEEE Tran. Antennas Propag. 61 1479Google Scholar

    [9]

    Li B, Shen Z 2014 IEEE Tran. Antennas Propag. 62 130Google Scholar

    [10]

    Liu Y, Zhao X 2014 IEEE Antennas Wirel. Propag. Lett. 13 1473Google Scholar

    [11]

    Youngworth K S, Brown T G 2000 Opt. Express 7 77Google Scholar

    [12]

    Novotny L, Zurita-Sánchez J R 2002 J. Opt. Soc. Am. B 19 2722Google Scholar

    [13]

    Zhan Q 2009 Adv. Opt. Photonics 1 1Google Scholar

    [14]

    Veysi M, Guclu C, Capolino F 2015 J. Opt. Soc. Am. B 32 345Google Scholar

    [15]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075Google Scholar

    [16]

    Marqués R, Medina F, Rafii-El-Idrissi R 2002 Phys. Rev. B 65 144440Google Scholar

    [17]

    García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz J J 2011 Opt. Express 19 4815Google Scholar

    [18]

    Liberal I, Li Y, Engheta N 2017 Philos. Trans. A 375 20160059Google Scholar

    [19]

    Jin Y, He S 2010 Opt. Express 18 16587Google Scholar

    [20]

    Jin Y, Zhang P, He S L 2010 Phys. Rev. B 81 085117Google Scholar

    [21]

    Zhong S, He S 2013 Sci. Rep. 3 2083Google Scholar

    [22]

    Silveirinha M G, Belov P A 2008 Phys. Rev. B 77 233104Google Scholar

    [23]

    Liu R, Roberts C M, Zhong Y, Podolskiy V A, Wasserman D 2016 ACS Photonics 3 1045Google Scholar

    [24]

    Zhou Z H, Li Y, Li H, Sun W Y, Liberal I, Engheta N 2019 Nat. Commun. 10 4132Google Scholar

    [25]

    Pacheco-Peña V, Engheta N, Kuznetsov S, Gentselev A, Beruete M 2017 Phys. Rev. Appl. 8 034036Google Scholar

    [26]

    Silveirinha M, Engheta N 2007 Phys. Rev. B 75 075119Google Scholar

    [27]

    Xu J, Song G, Zhang Z, Yang Y, Chen H, Zubairy M S, Zhu S 2016 Phys. Rev. B 94 220103Google Scholar

    [28]

    Liu R, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903Google Scholar

    [29]

    Guo Z Y, Wu F, Xue C H, Jiang H T 2018 J. Appl. Phys. 124 103104Google Scholar

    [30]

    Zhang Z F, Xue C H, Jiang H T, Lu H 2013 Appl. Phys. Lett. 103 201902Google Scholar

    [31]

    Liberal I, Mahmoud A, Li Y, Edwards B, Engheta N 2017 Science 355 1058Google Scholar

    [32]

    Wang Z R, Hu T, Tang L W, Ma N, Song C L, Han G R, Weng W J, Du P Y 2008 Appl. Phys. Lett. 93 222901Google Scholar

  • [1] 柏文庆, 杨江涛, 杨翠红, 陈云云. 电磁场调制下的应变黑磷烯带间光电导.  , 2024, 73(13): 137803. doi: 10.7498/aps.73.20240445
    [2] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应.  , 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [3] 龚志双, 王秉中, 王任. 亚波长间距理想导体球阵列近区时间反演电磁场的快速求解.  , 2018, 67(8): 084101. doi: 10.7498/aps.67.20172508
    [4] 林海笑, 俞昕宁, 刘士阳. 基于零折射磁性特异电磁介质的波前调控.  , 2015, 64(3): 034203. doi: 10.7498/aps.64.034203
    [5] 杨晓霞, 孔祥天, 戴庆. 石墨烯等离激元的光学性质及其应用前景.  , 2015, 64(10): 106801. doi: 10.7498/aps.64.106801
    [6] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究.  , 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [7] 董烨, 董志伟, 杨温渊, 周前红, 周海京. 介质窗横向电磁场分布下的次级电子倍增效应.  , 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [8] 陈桂波, 毕娟, 汪剑波, 陈新邑, 孙贯成, 卢俊. 水平层状介质中电磁场并矢Green函数的一种快速新算法.  , 2011, 60(9): 094102. doi: 10.7498/aps.60.094102
    [9] 谭康伯, 梁昌洪. 高频条件下运动边界的电磁场边界条件.  , 2009, 58(10): 6770-6771. doi: 10.7498/aps.58.6770
    [10] 陈桂波, 汪宏年, 姚敬金, 韩子夜, 杨守文. 水平层状各向异性介质中电磁场并矢Green函数的一种高效算法.  , 2009, 58(3): 1608-1618. doi: 10.7498/aps.58.1608
    [11] 王 平, 李芳昱, 何晓宇. 电磁场中光子-轴子的转化微分截面.  , 2008, 57(9): 5442-5447. doi: 10.7498/aps.57.5442
    [12] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算.  , 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [13] 许光明, 郑佳伟, 刘 勇, 崔建忠. 电磁场作用下溶质元素在镁合金AZ61的分布.  , 2007, 56(7): 4247-4251. doi: 10.7498/aps.56.4247
    [14] 王海龙, 吴 群, 李乐伟, 吴 健, 孟繁义. 垂直电偶极子在球外侧电磁场的闭合解及验证.  , 2007, 56(1): 195-200. doi: 10.7498/aps.56.195
    [15] 关 威, 胡恒山, 储昭坦. 声诱导电磁场的赫兹矢量表示与多极声电测井模拟.  , 2006, 55(1): 267-274. doi: 10.7498/aps.55.267
    [16] 欧阳世根, 关毅, 佘卫龙. 旋转超导体中的电流与电磁场.  , 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
    [17] 梁昌洪, 褚庆昕. 运动边界的电磁场边界条件.  , 2002, 51(10): 2202-2204. doi: 10.7498/aps.51.2202
    [18] 田强. 电磁场在超晶中传播的孤子解.  , 2001, 50(1): 99-101. doi: 10.7498/aps.50.99
    [19] 李鑑增. 电磁场存在时宇宙因子不为零的高维类Vaidya时空.  , 1992, 41(9): 1389-1395. doi: 10.7498/aps.41.1389
    [20] 顾福年. 关于求各向异性介质中电磁场的格林张量函数的一个方法.  , 1962, 18(12): 636-645. doi: 10.7498/aps.18.636
计量
  • 文章访问数:  7595
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-21
  • 修回日期:  2020-03-08
  • 上网日期:  2020-03-11
  • 刊出日期:  2020-08-05

/

返回文章
返回
Baidu
map