搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子对撞机产生正负电子对的数值方法

李昂 余金清 陈玉清 颜学庆

引用本文:
Citation:

光子对撞机产生正负电子对的数值方法

李昂, 余金清, 陈玉清, 颜学庆

Numerical method of electron-positron pairs generation in photon-photon collider

Li Ang, Yu Jin-Qing, Chen Yu-Qing, Yan Xue-Qing
PDF
HTML
导出引用
  • 光子对撞产生正负电子对的Breit-Wheeler过程, 是由能量直接产生物质的过程, 在物质的起源与光子物理理论的研究中有着极为重要的作用. 随着激光与物质作用产生γ光源品质的提升, 使得在实验室首次观测双光子对撞的Breit-Wheeler过程成为可能. 针对光子对撞机的数值模拟方法, 本文提出了一种基于严格的双光子对撞动力学过程的计算电子产额与动力学参数的数值方法. 在对Breit-Wheeler过程的模拟中, 根据光子的运动规律将光子划分为定量的区块, 检测区块的对撞, 然后在区块内部以动力学原理检测光子是否发生对撞, 该方法可以有效提升计算模拟的效率. 同时, 该方法与已经发表的理论结果进行了比较, 发现该计算结果与理论结果高度一致. 应用这一数值方法, 能够为Breit-Wheeler过程给出较为精确的模拟结果, 也可以为未来γγ对撞机的实验设计提供参照.
    The creation of positron and electron pairs through photon-photon collision, named Breit-Wheeler process, has been well understood in the theories of quantum electrodynamics for nearly 100 years. The photon-photon collision, which is one of the most basic processes of matter generation in the universe, has not been observed yet. The study on photon-photon collision can promote the development of two-photon physics, quantum electrodynamics theories and high energy physics. To observe photon-photon collision in the laboratory, one needs to collimate a huge number of energetic γ-ray photons into a very small spot. Recently, the development of highly collomated source generated by 10 PW laser makes photon-photon collider much more possible than before. In photon-photon collider, the study of numerical simulation plays a critical role since no experiment has achieved such a process. In this paper, a new numerical method is developed to handle the two-photon Breit-Wheeler process. This method is based on the exact two-photon collision dynamic principle, including energy threshold condition, cross-section condition, Lorentz transformation, etc. In the method, the photons are divided into quantitative photon blocks based on the spatial coordinates. Firstly, one needs to find the collision blocks according to the spatial motion law. Secondly, the ergodic method is used to look up the photons that satisfy the energy threshold condition and the cross-section condition from the blocks. Then, one can calculate the electron yield of the photon collision, and the kinetic parameters of the positrons and electrons. This method rigorously follows the physical principle so it has high precision. On the other hand, this method determines the collision of the block in advance, which can reduce the computational requirement a lot. A series of tests is carried out to confirm the accuracy and feasibility of this numerical method by calculating the collision between mono-energetic photon beams. In the tests, the collision angle is assumed to 180° and 60° separately, the results of pair momentum distribution are discussed. We also simulate the collision of the γ-ray beams generated through the interaction between ultra-intense laser and narrow tube targets. In the simulations, the collision angle is changed from 170° to 30° to see its effect on pair production. It is found that the yield of electron-positron pairs decreases with collision angle increasing, which has also been reported in previous work. Therefore, this numerical method can be efficiently used for modeling photon-photon collider, and provide theoretical reference and suggestion to the future experimental design of γ-ray collision.
      通信作者: 余金清, jinqing.yu@hnu.edu.cn
      Corresponding author: Yu Jin-Qing, jinqing.yu@hnu.edu.cn
    [1]

    Marklund M, Shukla P K 2006 Rev. Mod. Phys. 78 591Google Scholar

    [2]

    Ehlotzky F, Krajewska K, Kamiński J 2009 Rep. Prog. Phys. 72 046401Google Scholar

    [3]

    Piazza A D, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [4]

    黄金书, 罗鹏晖, 鲁公儒 2009 58 12

    Huang J S, Luo P H, Lu G R 2009 Acta Phys. Sin. 58 12

    [5]

    Burke D L, Field R C, Smith G H, Spencer J E, Walz D 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [6]

    Breit G, Wheeler J A 1934 Phys. Rev. 46 1087Google Scholar

    [7]

    Yu J Q, Lu H Y, Takahashi T, Hu R H, Gong Z, Ma W J, Huang Y S, Chen C E, Yan X Q 2019 Phys. Rev. Lett. 122 014802Google Scholar

    [8]

    周美林, 颜学庆 2015 物理 44 281Google Scholar

    Zhou M L, Yan X Q 2015 Physics 44 281Google Scholar

    [9]

    Brady C S, Ridgers C, Arber T, Bell A R 2013 Plasma. Phys. Controlled Fusion 55 124016Google Scholar

    [10]

    Yu J Q, Hu R H, Gong Z, Ting A, Najmudin Z, Wu D, Lu H Y, Ma W J, Yan X Q 2018 Appl. Phys. Lett. 112 204103Google Scholar

    [11]

    Yu T P, Pukhov A, Sheng Z M, Liu F, Shvets G 2013 Phys. Rev. Lett. 110 045001Google Scholar

    [12]

    Stark D J, Toncian T, Arefiev A V 2016 Phys. Rev. Lett. 116 185003Google Scholar

    [13]

    Capdessus R, Humi`eres E, Tikhonchuk V T 2013 Phys. Rev. Lett. 110 215003Google Scholar

    [14]

    Brady C S, Ridgers C P, Arber T D, Bell A R, Kirk J G 2012 Phys. Rev. Lett. 109 245006Google Scholar

    [15]

    Nakamura T, Koga J K, Esirkepov T Z, Kando M, Korn G, Bulanov S V 2012 Phys. Rev. Lett. 108 195001Google Scholar

    [16]

    Yi L, Pukhov A, Thanh P L, Shen B 2016 Phys. Rev. Lett. 116 115001Google Scholar

    [17]

    Ji L L, Snyder J, Pukhov A, Freeman R R, Akli K U 2016 Sci. Rep. 6 23256Google Scholar

    [18]

    Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E, Pukhov A 2016 Nat. Commun. 7 13686Google Scholar

    [19]

    Liu J X, Ma Y Y, Yu T P, Zhao J, Yang X H, Zou D B, Zhang G B, Zhao Y, Yang J K, Li H Z, Zhuo H B, Shao F Q, Kawata S 2017 Chin. Phys. B 26 035202Google Scholar

    [20]

    Geng P F, Lv W J, Li X L, Tang R A, Xue J K 2018 Chin. Phys. B 27 035201Google Scholar

    [21]

    Zhang G B, Hafz N A M, Ma Y Y, Qian L J, Shao F Q, Sheng Z M 2016 Chin. Phys. Lett. 33 095202Google Scholar

    [22]

    Zhu X L, Yin Y, Yu T P, Shao F Q, Ge Z Y, Wang W Q, Liu J J 2015 New J. Phys. 17 053039Google Scholar

    [23]

    Liu J J, Yu T P, Yin Y, Zhu X L, Shao F Q 2016 Opt. Express 24 14

    [24]

    Yu T P, Hu L X, Yin Y, Shao F Q, Zhuo H B, Ma Y Y, Yang X H, Luo W, Pukhov A 2014 Appl. Phys. Lett. 105 114101Google Scholar

    [25]

    Luo W, Zhu Y B, Zhuo H B, Ma Y Y, Song Y M, Zhu Z C, Wang X D, Li X H, Turcu I, Chen M 2015 Phys. Plasmas 22 063112Google Scholar

    [26]

    Luo W, Wu S D, Liu W Y, Ma Y Y, Li F Y, Yuan T, Yu J Y, Chen M, Sheng Z M 2018 Plasma Phys. Controlled Fusion 60 095006Google Scholar

    [27]

    Chen L M, Yan W C, Li D Z, Hu Z D, Zhang L, Wang W M, Hafz N, Mao J Y, Huang K, Ma Y, Zhao J R, Ma J L, Li Y T, Lu X, Sheng Z M, Wei Z Y, Gao J, Zhang J 2013 Sci. Rep. 3 1912Google Scholar

    [28]

    Wang W M, Sheng Z M, Gibbon P, Chen L M, Li Y T, Zhang J 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9911Google Scholar

    [29]

    Wang W M, Gibbon P, Sheng Z M, Li Y T, Zhang J 2017 Phys. Rev. E 96 013201Google Scholar

    [30]

    Chen M, Luo J, Li F Y, Liu F, Sheng Z M, Zhang J 2016 Light-Sci. Appl. 5 e16015Google Scholar

    [31]

    Liu J B, Yu J Q, Shou Y R, Wang D H, Hu R H, Tang Y H, Wang P J, Cao Z X, Mei Z S, Lin C, Lu H Y, Zhao Y Y, Zhu K, Yan X Q, Ma W J 2019 Phys. Plasmas 26 033109Google Scholar

    [32]

    Gong Z, Hu R H, Lu H Y, Yu J Q, Wang D H, Fu E G, Chen C E, He X T, Yan X Q 2018 Plasma Phys. Controlled Fusion 60 044004Google Scholar

    [33]

    H X Chang, B Qiao, Y X Zhang, Z Xu, W P Yao, C T Zhou, X T He 2017 Phys. Plasmas 24 043111Google Scholar

    [34]

    Cristoforetti G, Londrillo P, Singh P K et al. 2017 Phys. Plasmas 7 1479Google Scholar

    [35]

    Huang T, Zhou C, Zhang H, Wu S, Qiao B, He X, Ruan S 2017 Appl. Phys. Lett. 110 021102Google Scholar

    [36]

    Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fuison 60 044002Google Scholar

    [37]

    Ribeyre X, d’Humi`eres E, Jansen O, Jequier S, Tikhonchuk V T, Lobet M 2016 Phys. Rev. E 93 013201Google Scholar

    [38]

    Jansen O, d’Humi`eres E, Ribeyre X, Jequier S, Tikhonchuk V T 2018 J. Comput. Phys. 355 582

    [39]

    Pike O J, Mackenroth F, Hill E G, Rose S J 2014 Nat. Photonics 8 434Google Scholar

    [40]

    Ribeyre X, d’Humi`eres E, Jansen O, Jequier S, Tikhonchuk V T 2017 Plasma Phys. Controlled Fusion 59 014024Google Scholar

  • 图 1  单能光子180°对撞时 (a)电子动量分布; (b)正电子动量分布

    Fig. 1.  (a) Electron momentum distribution; (b) positron momentum distribution of 180° collision of single-energy photons.

    图 2  单能光子60°对撞时 (a)电子动量分布; (b)正电子动量分布

    Fig. 2.  (a) Electron momentum distribution; (b) positron momentum distribution from 60° collision of single-energy photons.

    图 3  粒子模拟程序得到的光子束角-谱分布[7,10]

    Fig. 3.  Angle-spectral distribution of photon beams from particle simulator[7,10].

    图 4  106光子170°对撞电子动量极角分布 (a)区块分法一; (b)区块分法二

    Fig. 4.  Polar angular distribution of electron momentum from 170° collision of 106 photons: (a) the first block division; (b) the second block division.

    图 5  电子产额随光子束对撞角的变化趋势

    Fig. 5.  The trend of electronic yield with the collision angle of photon beam.

    图 6  电子产额随光子束偏移量的变化趋势

    Fig. 6.  The trend of electronic yield with the offset of photon beam.

    Baidu
  • [1]

    Marklund M, Shukla P K 2006 Rev. Mod. Phys. 78 591Google Scholar

    [2]

    Ehlotzky F, Krajewska K, Kamiński J 2009 Rep. Prog. Phys. 72 046401Google Scholar

    [3]

    Piazza A D, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [4]

    黄金书, 罗鹏晖, 鲁公儒 2009 58 12

    Huang J S, Luo P H, Lu G R 2009 Acta Phys. Sin. 58 12

    [5]

    Burke D L, Field R C, Smith G H, Spencer J E, Walz D 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [6]

    Breit G, Wheeler J A 1934 Phys. Rev. 46 1087Google Scholar

    [7]

    Yu J Q, Lu H Y, Takahashi T, Hu R H, Gong Z, Ma W J, Huang Y S, Chen C E, Yan X Q 2019 Phys. Rev. Lett. 122 014802Google Scholar

    [8]

    周美林, 颜学庆 2015 物理 44 281Google Scholar

    Zhou M L, Yan X Q 2015 Physics 44 281Google Scholar

    [9]

    Brady C S, Ridgers C, Arber T, Bell A R 2013 Plasma. Phys. Controlled Fusion 55 124016Google Scholar

    [10]

    Yu J Q, Hu R H, Gong Z, Ting A, Najmudin Z, Wu D, Lu H Y, Ma W J, Yan X Q 2018 Appl. Phys. Lett. 112 204103Google Scholar

    [11]

    Yu T P, Pukhov A, Sheng Z M, Liu F, Shvets G 2013 Phys. Rev. Lett. 110 045001Google Scholar

    [12]

    Stark D J, Toncian T, Arefiev A V 2016 Phys. Rev. Lett. 116 185003Google Scholar

    [13]

    Capdessus R, Humi`eres E, Tikhonchuk V T 2013 Phys. Rev. Lett. 110 215003Google Scholar

    [14]

    Brady C S, Ridgers C P, Arber T D, Bell A R, Kirk J G 2012 Phys. Rev. Lett. 109 245006Google Scholar

    [15]

    Nakamura T, Koga J K, Esirkepov T Z, Kando M, Korn G, Bulanov S V 2012 Phys. Rev. Lett. 108 195001Google Scholar

    [16]

    Yi L, Pukhov A, Thanh P L, Shen B 2016 Phys. Rev. Lett. 116 115001Google Scholar

    [17]

    Ji L L, Snyder J, Pukhov A, Freeman R R, Akli K U 2016 Sci. Rep. 6 23256Google Scholar

    [18]

    Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E, Pukhov A 2016 Nat. Commun. 7 13686Google Scholar

    [19]

    Liu J X, Ma Y Y, Yu T P, Zhao J, Yang X H, Zou D B, Zhang G B, Zhao Y, Yang J K, Li H Z, Zhuo H B, Shao F Q, Kawata S 2017 Chin. Phys. B 26 035202Google Scholar

    [20]

    Geng P F, Lv W J, Li X L, Tang R A, Xue J K 2018 Chin. Phys. B 27 035201Google Scholar

    [21]

    Zhang G B, Hafz N A M, Ma Y Y, Qian L J, Shao F Q, Sheng Z M 2016 Chin. Phys. Lett. 33 095202Google Scholar

    [22]

    Zhu X L, Yin Y, Yu T P, Shao F Q, Ge Z Y, Wang W Q, Liu J J 2015 New J. Phys. 17 053039Google Scholar

    [23]

    Liu J J, Yu T P, Yin Y, Zhu X L, Shao F Q 2016 Opt. Express 24 14

    [24]

    Yu T P, Hu L X, Yin Y, Shao F Q, Zhuo H B, Ma Y Y, Yang X H, Luo W, Pukhov A 2014 Appl. Phys. Lett. 105 114101Google Scholar

    [25]

    Luo W, Zhu Y B, Zhuo H B, Ma Y Y, Song Y M, Zhu Z C, Wang X D, Li X H, Turcu I, Chen M 2015 Phys. Plasmas 22 063112Google Scholar

    [26]

    Luo W, Wu S D, Liu W Y, Ma Y Y, Li F Y, Yuan T, Yu J Y, Chen M, Sheng Z M 2018 Plasma Phys. Controlled Fusion 60 095006Google Scholar

    [27]

    Chen L M, Yan W C, Li D Z, Hu Z D, Zhang L, Wang W M, Hafz N, Mao J Y, Huang K, Ma Y, Zhao J R, Ma J L, Li Y T, Lu X, Sheng Z M, Wei Z Y, Gao J, Zhang J 2013 Sci. Rep. 3 1912Google Scholar

    [28]

    Wang W M, Sheng Z M, Gibbon P, Chen L M, Li Y T, Zhang J 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9911Google Scholar

    [29]

    Wang W M, Gibbon P, Sheng Z M, Li Y T, Zhang J 2017 Phys. Rev. E 96 013201Google Scholar

    [30]

    Chen M, Luo J, Li F Y, Liu F, Sheng Z M, Zhang J 2016 Light-Sci. Appl. 5 e16015Google Scholar

    [31]

    Liu J B, Yu J Q, Shou Y R, Wang D H, Hu R H, Tang Y H, Wang P J, Cao Z X, Mei Z S, Lin C, Lu H Y, Zhao Y Y, Zhu K, Yan X Q, Ma W J 2019 Phys. Plasmas 26 033109Google Scholar

    [32]

    Gong Z, Hu R H, Lu H Y, Yu J Q, Wang D H, Fu E G, Chen C E, He X T, Yan X Q 2018 Plasma Phys. Controlled Fusion 60 044004Google Scholar

    [33]

    H X Chang, B Qiao, Y X Zhang, Z Xu, W P Yao, C T Zhou, X T He 2017 Phys. Plasmas 24 043111Google Scholar

    [34]

    Cristoforetti G, Londrillo P, Singh P K et al. 2017 Phys. Plasmas 7 1479Google Scholar

    [35]

    Huang T, Zhou C, Zhang H, Wu S, Qiao B, He X, Ruan S 2017 Appl. Phys. Lett. 110 021102Google Scholar

    [36]

    Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fuison 60 044002Google Scholar

    [37]

    Ribeyre X, d’Humi`eres E, Jansen O, Jequier S, Tikhonchuk V T, Lobet M 2016 Phys. Rev. E 93 013201Google Scholar

    [38]

    Jansen O, d’Humi`eres E, Ribeyre X, Jequier S, Tikhonchuk V T 2018 J. Comput. Phys. 355 582

    [39]

    Pike O J, Mackenroth F, Hill E G, Rose S J 2014 Nat. Photonics 8 434Google Scholar

    [40]

    Ribeyre X, d’Humi`eres E, Jansen O, Jequier S, Tikhonchuk V T 2017 Plasma Phys. Controlled Fusion 59 014024Google Scholar

  • [1] 李传可, 林南省, 周鲜鲜, 江淼, 李英骏. 双振荡场产生正负电子对的理论研究.  , 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [2] 叶全兴, 何广朝, 王倩. 正负电子对撞中类底夸克偶素的线形.  , 2023, 72(20): 201401. doi: 10.7498/aps.72.20230908
    [3] 罗蕙一, 江淼, 徐妙华, 李英骏. 不同频率的组合振荡场下产生正负电子对.  , 2023, 72(2): 021201. doi: 10.7498/aps.72.20221660
    [4] 牟家连, 吕军光, 孙希磊, 兰小飞, 黄永盛. 环形正负电子对撞机带电粒子鉴别的飞行时间探测器.  , 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [5] 谢柏松, 李烈娟, 麦丽开·麦提斯迪克, 王莉. 频率啁啾对强场下真空正负电子对产生的增强效应.  , 2022, 71(13): 131201. doi: 10.7498/aps.71.20220148
    [6] 范佳锟, 王洁, 高勇, 游志明, 王盛, 张静, 胡耀程, 许章炼, 王斌. 超级质子-质子对撞机中束流热屏的热-结构耦合模拟分析.  , 2021, 70(1): 012901. doi: 10.7498/aps.70.20200830
    [7] 游志明, 王洁, 高勇, 范佳锟, 张静, 胡耀程, 王盛, 许章炼, 张琦. 超级质子-质子对撞机束屏内气体密度演化规律研究.  , 2021, 70(16): 166802. doi: 10.7498/aps.70.20201594
    [8] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展.  , 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [9] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展.  , 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [10] 江淼, 郑晓冉, 林南省, 李英骏. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应.  , 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [11] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案.  , 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [12] 吴广智, 王强, 周沧涛, 傅立斌. 双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象.  , 2017, 66(7): 070301. doi: 10.7498/aps.66.070301
    [13] 王晓晖, 常本康, 钱芸生, 高频, 张益军, 乔建良, 杜晓晴. 透射式负电子亲和势GaN光电阴极的光谱响应研究.  , 2011, 60(5): 057902. doi: 10.7498/aps.60.057902
    [14] 付小倩, 常本康, 李飙, 王晓晖, 乔建良. 负电子亲和势GaN光电阴极的研究进展.  , 2011, 60(3): 038503. doi: 10.7498/aps.60.038503
    [15] 乔建良, 常本康, 钱芸生, 高频, 王晓晖, 徐源. 负电子亲和势GaN真空面电子源研究进展.  , 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [16] 乔建良, 常本康, 钱芸生, 杜晓晴, 张益军, 高频, 王晓晖, 郭向阳, 牛军, 高有堂. 负电子亲和势GaN光电阴极光谱响应特性研究.  , 2010, 59(5): 3577-3582. doi: 10.7498/aps.59.3577
    [17] 乔建良, 田思, 常本康, 杜晓晴, 高频. 负电子亲和势GaN光电阴极激活机理研究.  , 2009, 58(8): 5847-5851. doi: 10.7498/aps.58.5847
    [18] 杜晓晴, 常本康. 负电子亲和势光电阴极量子效率公式的修正.  , 2009, 58(12): 8643-8650. doi: 10.7498/aps.58.8643
    [19] 黄金书, 罗鹏晖, 鲁公儒. 关于光子对撞机上底夸克对产生的研究.  , 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [20] 罗辽复, 陆埮. 高能正负电子对的湮没与超窄共振ψ粒子的作用.  , 1975, 24(2): 145-150. doi: 10.7498/aps.24.145
计量
  • 文章访问数:  8951
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-14
  • 修回日期:  2019-10-18
  • 上网日期:  2019-12-07
  • 刊出日期:  2020-01-05

/

返回文章
返回
Baidu
map