搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光驱动高能极化正负电子束与偏振伽马射线的研究进展

孙婷 王宇 郭任彤 卢知为 栗建兴

引用本文:
Citation:

强激光驱动高能极化正负电子束与偏振伽马射线的研究进展

孙婷, 王宇, 郭任彤, 卢知为, 栗建兴

Review on laser-driven high-energy polarized electron and positron beams and γ-rays

Sun Ting, Wang Yu, Guo Ren-Tong, Lu Zhi-Wei, Li Jian-Xing
PDF
HTML
导出引用
  • 高能自旋极化正负电子束与偏振伽马射线在高能物理、实验室天体物理与核物理等领域有十分重要的应用. 近年来随着超短超强激光脉冲技术的快速发展, 利用强激光与物质相互作用的非线性康普顿散射和多光子Breit-Wheeler过程为制备高极化度、高束流密度的高能极化粒子束提供了新的可能. 本文对基于强激光产生高能极化正负电子束与偏振伽马射线的研究成果进行简要回顾, 并介绍了这些方法的基本物理原理和主要结果.
    High-energy spin-polarized electron and positron beams and γ-rays have plenty of significant applications in high-energy, laboratory astro- and nuclear physics, and the efficient generation of such polarized beams attracts a broad research interest. Recently, with the rapid development of ultrashort ultraintense laser pulse technology, the modern laser pulses can achieve a peak intensity in a range of 1022$10^{23}$ W/cm2 with a pulse duration of tens of femtoseconds. The interaction mechanisms between such a laser pulse and matter have been spanned from linear regime to nonlinear regime due to multiphoton absorbtion, such as nonlinear Compton scattering and Breit-Wheeler pair production. Employing spin-dependent nonlinear Compton scattering and multiphoton Breit-Wheeler scattering in laser-matter interaction paves a new way for generating the high-polarized high-density high-energy electron and positron beams and γ-rays with tens of femtoseconds in pulse duration. This article briefly reviews the research progress of polarized electron and positron beams and γ-rays generated by laser-matter interaction, and also introduces the principles and main conclusions.
      通信作者: 栗建兴, jianxing@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12022506, 11874295)资助的课题
      Corresponding author: Li Jian-Xing, jianxing@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12022506, 11874295)
    [1]

    Gay T 2009 Adv. At. Mol. Opt. Phys. 57 157

    [2]

    Abe K, Akagi T, Anthony P L, Antonov R, Arnold R G, Averett T, Breton V 1995 Phys. Rev. Lett. 75 25Google Scholar

    [3]

    Alexakhin V Y, Alexandrov Y, Alexeev G D, Alexeev M, Amoroso A, Badełek B, Becker M 2007 Phys. Lett. B 647 8Google Scholar

    [4]

    Androic D, Armstrong D S, Asaturyan A, Averett T, Balewski J, Beaufait J, Carlini R D 2013 Phys. Rev. Lett. 111 141803Google Scholar

    [5]

    Anthony P L, Arnold R G, Arroyo C, Baird K, Bega K, Biesiada J, Chen J P 2004 Phys. Rev. Lett. 92 181602Google Scholar

    [6]

    Moortgat-Pick G, Abe T, Alexander G, et al. 2008 Phys. Rep. 460 131Google Scholar

    [7]

    Olsen H, Maximon L C 1959 Phys. Rev. 114 887Google Scholar

    [8]

    Abbott D, Adderley P, Adeyemi A, et al. 2016 Phys. Rev. Lett. 116 214801Google Scholar

    [9]

    Swartz M L 1988 Physics with Polarized Beams Report (California: Stanford Linear Accelerator Center) No.SLAC-PUB-4656

    [10]

    Pierce D T, Meier F 1976 Phys. Rev. B 13 5484Google Scholar

    [11]

    Pierce D T, Meier F, Zürcher P 1975 Appl. Phys. Lett. 26 670Google Scholar

    [12]

    Redsun S G, Knize R J, Cates G D, Happer W 1990 Phys. Rev. A 42 1293Google Scholar

    [13]

    Batelaan H, Green A S, Hitt B A, Gay T J 1999 Phys. Rev. Lett. 82 4216Google Scholar

    [14]

    Paetz G S, Hans 2012 Nuclear Physics with Polarized Particles (BerLin: Springer) pp75–135

    [15]

    Matthias D, Carsten M 2017 Phys. Rev. Lett. 118 070403Google Scholar

    [16]

    Matthias D, Carsten M 2017 Phys. Rev. A 95 042124Google Scholar

    [17]

    Wen M, Tamburini M, Keitel C H 2019 Phys. Rev. Lett. 122 214801Google Scholar

    [18]

    Wu Y T, Ji L L, Geng X S, Yu Q, Wang N W, Feng B, Guo Z, Wang W Q, Qin C Y, Yan X, Zhang L G, Thomas J, Hützen A, Pukhov A, Büscher M, Shen B F, Li R X 2019 Phys. Rev. E 100 043202Google Scholar

    [19]

    Mane S R 1987 Phys. Rev. A 36 105Google Scholar

    [20]

    Derbenev Y S, Kondratenko A M 1973 Sov. Phys. JETP 37 1918

    [21]

    Baier V N, Katkov V M 1967 Phys. Lett. A 24 327Google Scholar

    [22]

    Sokolov A A, Ternov I M 1968 Synchrotron Radiation (Akademie: Berlin)

    [23]

    Alexander W C 1981 Nucl. Instrum. Methods 180 29Google Scholar

    [24]

    Baier V N 1972 Sov. Phys. Usp. 14 695Google Scholar

    [25]

    Sokolov A A, Ternov I M, Mikhailin V V 1976 Soviet Physics Journal 19 403Google Scholar

    [26]

    Hirose T, Dobashi K, Kurihara Y, Muto T, Omori T, Okugi T, Washio M 2000 Nucl. Instrum. Methods Phys. Res. A 455 15Google Scholar

    [27]

    Omori T, Fukuda M, Hirose T, Kurihara Y, Kuroda R, Nomura M, Ohashi A, Okugi T, Sakaue K, Saito T, Urakawa J, Washio M, Yamazaki I 2006 Phys. Rev. Lett. 96 114801Google Scholar

    [28]

    Alexander G, Barley J, Batygin Y, Berridge S C, Bharadwaj V, Bower G, Bugg W, Decker F J, Dollan R, Efremenko Y, Gharibyan V, Hast C, Iverson R, Kolanoski H, Kovermann J, Laihem K, Lohse T, McDonald K T, Mikhailichenko A A, Moortgat-Pick G A, Pahl P, Pitthan R, Pöschl R, ReinherzAronis E, Riemann S, Schälicke A, Schüler K P, Schweizer T, Scott D, Sheppard J C, Stahl A, Szalata Z M, Walz D, Weidemann A W 2008 Phys. Rev. Lett. 100 210801Google Scholar

    [29]

    Variola A 2014 Nucl. Instrum. Methods Phys. Res. A 740 21Google Scholar

    [30]

    Bragin S, Meuren S, Keitel C H, Piazza A D 2017 Phys. Rev. Lett. 119 250403Google Scholar

    [31]

    Nakamiya Y, Homma K 2017 Phys. Rev. D 96 053002Google Scholar

    [32]

    Céline B, Céline D, Olivier M, Vincent A C 2017 J. Cosmol. Astropart. Phys. 2017.05 043Google Scholar

    [33]

    Speth J, van der Woude A 1981 Rep. Prog. Phys. 44 719Google Scholar

    [34]

    Akbar Z, Roy P, Park S, et al. 2017 Phys. Rev. C 96 065209Google Scholar

    [35]

    Bocquet J P, Ajaka J, Anghinolfi M, et al. 1997 Nucl. Phys. A 622 c124Google Scholar

    [36]

    Ritus V I 1985 J. Sov. Laser Res. 6 497Google Scholar

    [37]

    Khokonov M K, Bekulova I Z 2010 Tech. Phys. 55 728Google Scholar

    [38]

    Baier V N, Katkov V M, Fadin V S 1973 Radiation from Relativistic Electrons (Moscow: Atomizdat)

    [39]

    Baier V N, Katkov V M, Strakhovenko V M 1998 Electromagnetic Processes at High Energies in Oriented Single Crystals (Singapore: World Scientific) p376

    [40]

    Uggerho J, Ulrik I 2005 Rev. Mod. phys. 77 1131Google Scholar

    [41]

    Timm U 1969 Coherent Bremsstrahlung of Electrons in Crystals (Hamburg: West Germany) pp766–769

    [42]

    Donna S, Gerard M 1985 Opt. Commun. 56 219Google Scholar

    [43]

    Yo O, Jin W, Cheonha J, Junghoon S, Seong K L, Hwang W L, Il W C, Hyung T K, Jae H S, Chang H N 2019 Opt. Express 27 20412Google Scholar

    [44]

    Colin D, Constantin H, Jake B, Thomas B, Jean-Christophe F C, Enam A C, Almantas G 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [45]

    John D J 2001 Classical Electrodynamics (3rd Ed.) (Beijing: Higher Education Press) p694

    [46]

    Berestetskii V B, Lifshits E M, Pitaevskii L P 2011 Quantum Electrodynamics (2nd Ed.) (Beijing: World Publishing Corporation)

    [47]

    Piazza A D, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [48]

    Bocaa M, Florescu V 2010 Eur. Phys. J. D 61 pp449-462Google Scholar

    [49]

    Seipt D, Kampfer B 2010 Phys. Rev. A 83 022101

    [50]

    Blackburn T G, Ilderton A, Murphy C D, Marklund M 2017 Phys. Rev. A 96 022128Google Scholar

    [51]

    Ivanov D Y, Kotkin G L, Serbo V G 2005 Eur. Phys. J. C 40 27Google Scholar

    [52]

    Seipt D, King B 2020 Phys. Rev. A 102 052805Google Scholar

    [53]

    Kirsebom K, Mikkelsen U, Uggerhøj E, Elsener K, Ballestrero S, Sona P, Vilakazi Z Z 2001 Phys. Rev. Lett. 87 054801Google Scholar

    [54]

    Bula C, McDonald K T, Prebys E J, Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L, Field R C, Horton-Smith G, Odian A C, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W 1996 Phys. Rev. Lett. 76 3116Google Scholar

    [55]

    Bamber C, Boege S J, Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A, Ragg W, Bula C, McDonald K T, Prebys E J, Burke D L, Field R C, HortonSmith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W 1999 Phys. Rev. D 60 092004Google Scholar

    [56]

    Panek P, Kaminski J Z 2002 Phys. Rev. A 65 022712Google Scholar

    [57]

    Krajewska K, Kaminski J Z 2013 Laser Part. Beams 31 503Google Scholar

    [58]

    Ehlotzky F, Krajewska K, Kamiński J Z 2009 Rep. Prog. Phys. 72 046401Google Scholar

    [59]

    Kotkin G L, Serbo V G, Telnov V I 2003 Phys. Rev. Spec. Top. Accel. Beams 6 011001Google Scholar

    [60]

    Dmitry V K 2011 Phys. Rev. A 84 062116Google Scholar

    [61]

    Poder K, Tamburini M, Sarri G, Piazza A D, Kuschel S, Baird C D, Behm K, Bohlen S, Cole J M, Corvan D J, Duff M, Gerstmayr E, Keitel C H, Krushelnick K, Mangles S P D, McKenna P, Murphy C D, Najmudin Z, Ridgers C P, Samarin G M, Symes D R, Thomas A G R, Warwick J, Zepf M 2018 Phys. Rev. X 8 031004Google Scholar

    [62]

    Cole J M, Behm K T, Gerstmayr E, et al. 2018 Phys. Rev. X 8 011020Google Scholar

    [63]

    Guo R T, Wang Y, Shaisultanov R, Wan F, Xu Z F, Chen Y Y, Li J X 2020 Phys. Rev. Research 2 033483Google Scholar

    [64]

    Del Sorbo D, Seipt D, Blackburn T G, Thomas A G R, Murphy C D, Kirk J G, Ridgers C P 2017 Phys. Rev. A 96 043407Google Scholar

    [65]

    Sorbo D D, Seipt D, Thomas A G R, Ridgers C P 2018 Plasma Phys. Controlled Fusion 60 064003Google Scholar

    [66]

    Seipt D, Sorbo D D, Ridgers C P, Thomas A G R 2018 Phys. Rev. A 98 023417Google Scholar

    [67]

    Piazza A D, Tamburini M, Meuren S, Keitel C H 2018 Phys. Rev. A 98 012134Google Scholar

    [68]

    Piazza A D, Tamburini M, Meuren S, Keitel C H 2019 Phys. Rev. A 99 022125Google Scholar

    [69]

    Ilderton A, King B, Seipt D 2019 Phys. Rev. A 99 042121Google Scholar

    [70]

    Khokonov M K, Nitta H 2002 Phys. Rev. Lett. 89 094801Google Scholar

    [71]

    Li Y F, Shaisultanov R, Hatsagortsyan K Z, Wan F, Keitel C H, Li J X 2019 Phys. Rev. Lett. 122 154801Google Scholar

    [72]

    Li J X, Hatsagortsyan K Z, Keitel C H 2014 Phys. Rev. Lett. 113 044801Google Scholar

    [73]

    Mølmer K, Castin Y 1996 J. Eur. Opt. Soc. Part B 8 49

    [74]

    Plenio M B, Knight P L 1998 Rev. Mod. Phys. 70 101Google Scholar

    [75]

    Geng X S, Ji L L, Shen B F, Feng B, Guo Z, Han Q Q, Qin C Y, Wang W Q, Wu Y T, Yan X, Yu Q, Zhang L G, Xu Z Z 2020 New J. Phys. 22 013007Google Scholar

    [76]

    Seipt D, Sorbo D D, Ridgers C P, Thomas A G R 2019 Phys. Rev. A 100 061402Google Scholar

    [77]

    Song H H, Wang W M, Li J X, Li Y F, Li Y T 2019 Phys. Rev. A 100 033407Google Scholar

    [78]

    Wu Y T, Ji L L, Geng X S, Yu Q, Wang N W, Feng B, Guo Z, Wang W Q, Qin C Y, Yan X, Zhang L G, Thomas J, Hützen A, Büscher M, Rakitzis T P, Pukhov A, Shen B F, Li R X 2019 New J. Phys. 21 073052Google Scholar

    [79]

    Steinke S, van Tilborg J, Benedetti C, Geddes C G R, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [80]

    Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett 111 165002Google Scholar

    [81]

    Dimitris S, Luis R L, Lykourgos B, Andrew J A, Rakitzis T P 2008 J. Chem. Phys. 129 144302Google Scholar

    [82]

    Dimitris S, Pavle G, Greta K, Jiang H Y, Lykourgos B, Samartzis P C, Alexander A, Rakitzis T P 2017 Phys. Rev. Lett. 118 233401Google Scholar

    [83]

    Dimitris S, Chrysovalantis S K, Gregoris K B, Rakitzis T P 2018 Phys. Rev. Lett. 121 083001Google Scholar

    [84]

    Rakitzis T P, Samartzis P C, Toomes R L, Kitsopoulos T N, Brown A, Balint-Kurti G G, Vasyutinskii O S and Beswick J A 2003 Science 300 1936Google Scholar

    [85]

    Rakitzis T P 2004 Eur. J. Chem. Phys. Phys. Chem. 5 1489Google Scholar

    [86]

    Jin L L, Wen M, Zhang X M, Hützen A, Johannes T, Büscher M, Shen B F 2020 Phys. Rev. E 102 011201Google Scholar

    [87]

    Hützen A, Thomas J, Böker J, Engels R, Gebel R, Lehrach A, Pukhov A, Rakitzis T P, Sofikitis D and Büscher M 2019 High Power Laser Sci. 7 E16Google Scholar

    [88]

    Burke D L, Field R C, G Horton S G, Spencer, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C, McDonald K T, Prebys E J, Bamber C, Boege S J, Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A, Ragg W 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [89]

    Hu H Y, Carsten M, Christoph H K 2010 Phys. Rev. Lett. 105 080401Google Scholar

    [90]

    Sarri G, Schumaker W, Piazza A D, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A 2013 Phys. Rev. Lett. 110 255002Google Scholar

    [91]

    Titov A I, Takabe H, Kampfer B, Hosaka A 2012 Phys. Rev. Lett. 108 240406Google Scholar

    [92]

    Obulkasim O, Li Z L, Xie B S, Reinhard A 2019 Phys. Rev. D 99 036003Google Scholar

    [93]

    Tobias N W 2020 Phys. Rev. D 101 076017Google Scholar

    [94]

    Wan F, Shaisultanov R, Li Y F, Hatsagortsyan K Z, Keitel C H, Li J X 2020 Phys. Lett. B 800 135120Google Scholar

    [95]

    Chen Y Y, He P L, Shaisultanov R, Hatsagortsyan K Z, Keitel C H 2019 Phys. Rev. Lett. 123 174801Google Scholar

    [96]

    Wan F, Wang Y, Guo R T, Chen Y Y, Shaisultanov R, Xu Z F, Keitel C H, Hatsagortsyan K Z, Li J X 2020 Phys. Rev. Res. 2 032049Google Scholar

    [97]

    Jansen M J A, Kamiński J Z, Krajewska K, Müller C 2016 Phys. Rev. D 94 013010Google Scholar

    [98]

    Li Y F, Chen Y Y, Wang W M, Hu H S 2020 Phys. Rev. Lett. 125 044802Google Scholar

    [99]

    Clarke J A, Malyshev O B, Scott D J, Bailey I R, Dainton J B, Hock K M, Jenner L J, Malysheva L I, Zang L, Baynham E, Bradshaw T W, Brummitt A J, Carr F S, Lintern A J, Rochford J, Bharadwaj V, Sheppard J, Bungau A, Collomb N A, Dollan R, Gai W 2011 EPAC’08, 11th European Particle Accelerator Conference Genoa, Italy, June 23–27, 2008 p1915

    [100]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [101]

    Chen P, Dawson J M, Huff R W, Katsouleas T 1985 Phys. Rev. Lett. 54 693Google Scholar

    [102]

    Nakajima K, Fisher D, Kawakubo T, Nakanishi H, Ogata A, Kato Y, Kitagawa Y, Kodama R, Mima K, Shiraga H, Suzuki K, Yamakawa K, Zhang T, Sakawa Y, Shoji T, Nishida Y, Yugami N, Downer M, Tajima T 1995 Phys. Rev. Lett. 74 4428Google Scholar

    [103]

    Vieira J, Mendonça J T 2014 Phys. Rev. Lett. 112 215001Google Scholar

    [104]

    Neeraj J, Antonsen J T M, Palastro J P 2015 Phys. Rev. Lett. 115 195001Google Scholar

    [105]

    Diederichs S, Mehrling T J, Benedetti C, Schroeder C B, Knetsch A, Esarey E, Osterhoff J 2019 Phys. Rev. Accel. Beams 22 081301Google Scholar

    [106]

    Yi L Q, Shen B F, Ji L L, Lotov K, Sosedkin A, Zhang X M, Wang W P, Xu J C, Shi Y, Zhang L G, Xu Z Z 2014 Sci. Rep. 4 1

    [107]

    Xu Z L, Yi L Q, Shen B F, Xu J C, Ji L L, Xu T J, Zhang L G, Li S, Xu Z Z 2020 Commun. Phys. 3 1Google Scholar

    [108]

    Liu W Y, Xue K, Wan F, Chen M, Li J X, Liu F, Weng S M, Sheng Z M, Zhang J 2020 arXiv: 2011.00156 v1 [physics.plasm-ph]

    [109]

    Giulietti A, Bourgeois N, Ceccotti T, Davoine X, Dobosz S, D’Oliveira P, Galimberti M, Galy J, Gamucci A, Giulietti D, Gizzi L A, Hamilton D J, Lefebvre E, Labate L, Marques J R, Monot P, Popescu H, Reau F, Sarri G, Tomassini P, Martin P 2008 Phys. Rev. Lett. 101 105002Google Scholar

    [110]

    Schumaker W, Sarri G, Vargas M, Zhao Z, Behm K, Chvykov V, Dromey B, Hou B, Maksimchuk A, Nees J, Yanovsky V, Zepf M, Thomas A G R, Krushelnick K 2014 Phys. Plasmas 21 056704Google Scholar

    [111]

    Félicie A, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001Google Scholar

    [112]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A D, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801

    [113]

    Yan W C, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B Z, Zhang J, Liu C, Chen M, Chen S Y, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar

    [114]

    Ivanov D Y, Kotkin G L, Serbo V G 2004 Eur. Phys. J. C 36 127Google Scholar

    [115]

    Wistisen T N, Piazza A D 2019 Phys. Rev. D 100 116001Google Scholar

    [116]

    King B, Tang S 2020 Phys. Rev. A 102 022809Google Scholar

    [117]

    Tang S, King B, Hu H 2020 Phys. Lett. B 809 135701Google Scholar

    [118]

    Li Y F, Shaisultanov R, Chen Y Y, Wan F, Hatsagortsyan K Z, Keitel C H, Li J X 2020 Phys. Rev. Lett. 124 014801Google Scholar

    [119]

    Xue K, Dou Z K, Wan F, Yu T P, Wang W M, Ren J R, Zhao W, Zhao Y T, Xu Z F, Li J X 2020 Matter Radiat. Extremes 5 054402Google Scholar

  • 图 1  (a)电子的空间轨迹; (b)相向传播的强度分别为a0 = 200, 600与2000的两束圆偏振激光脉冲形成的驻波磁节点上电子的极化度随时间的变化. 实线代表电子初始时间处于静止状态, 虚线表示初始做螺旋运动的电子[65]

    Fig. 1.  (a) Spatial trajectory and (b) relative degree of spin polarization antiparallel for electrons at the magnetic node of two counter-propagating laser fields with a0 = 200, 600 and 2000. Continuous lines refer to electrons initially at rest and dashed lines to electrons settled in the circular trajectory from the outset[65]

    图 2  散射电子的横向动量与自旋(箭头)的分布. 箭头的长短表示动量为${ p}_\perp^\prime$的电子极化度的大小[66]

    Fig. 2.  Transverse momentum distribution of the scattered electrons (as a heatmap) and the polarization of scattered electrons transverse to the beam axis (arrows). The length of the arrows indicates the magnitude of the polarization for a given ${ p}_\perp^\prime$[66]

    图 3  (a)散射电子束的自旋分量$S_y$的横向角分布; (b)散射电子束数密度 ${\rm{log}}_{10}[{\rm{d}}^2 N_{\rm e}/({\rm{d}}\theta_x{\rm{d}}{\theta_y})]$${\rm {rad}}^{-2}$的横向角分布; (c)散射电子束的平均自旋$\overline{S}_y$(紫红色实线)与电子数密度${\rm{log}}_{10}({\rm{d}}N_{{e}}/{\rm{d}}{\theta_y})$(黑色虚线)随$\theta_y$的变化; (d)电子自旋在$y$方向的平均值$\overline{S}_y$与被极化电子束数目与电子总数的比值$N_{\rm{e}}^{\rm p}/N_{\rm e}$的关系, 红色与蓝色的曲线分别代表电子的自旋与$+y$轴平行或者反平行[71]

    Fig. 3.  (a) Transverse distribution of the electron spin component $S_y$ vs. the deflection angles $\theta_x$=arctan$(p_x/p_z)$ and $\theta_y$=arctan$(p_y/p_z)$; (b) transverse distribution of the electron density ${\rm{log}}_{10}[{\rm{d}}^2 N_{\rm e}/({\rm{d}}\theta_x{\rm{d}}{\theta_y})]$${\rm {rad}}^{-2}$; (c) averagy spin $\overline{S}_y$ (magenta solid) and electron distribution ${\rm {log}}_{10}({\rm{d}}N_{\rm e}/{\rm{d}}\theta_y)$ (black dashed) vs. $\theta_y$; (d) ratio of polarized electron number $N_{\rm e}^{\rm p}$ to total electron number $N_{\rm e}$ vs. the beam average spin $\overline{S}_y$. The rad (right) and blue (left) curves repersent the polarization parallel and antiparallel to the $+y$ axis, respectively[71]

    图 4  (a) $\chi_{\rm e}=1$, (b) $\chi_{\rm e}=0.1$时方程(2)中与电子自旋有关的一项占总概率的比重, $\text {δ} W_{\rm spin}\equiv W_{\rm spin}/(W_{\rm rad}-W_{\rm spin})$, $W_{\rm rad}$$W_{\rm spin}$分别是总辐射概率与方程(2)中和自旋相关的项, 红色与蓝色实线分别表示电子初始自旋${ S}_{\rm i}$与SQA轴平行或者反平行; (c) 椭圆(线)偏振平面波中的电子动量. 在图(c2)和图(c3)中红色向上(蓝色向下)的箭头表示自旋与$+y$方向平行(反平行)[71]

    Fig. 4.  Relative magnitude of the spin-dependent term in the radiation probability of Eq.(2) with (a) $\chi_{\rm e}=1$ and (b) $\chi_{\rm e}=0.1$, respectively. $\text {δ} W_{\rm spin}\equiv W_{\rm spin}/(W_{\rm rad}-W_{\rm spin})$, $W_{\rm rad}$ and $W_{\rm spin}$ are the total radiation probability and the spin-dependent term in Eq.(2), respectively. Red and blue curves denote ${ S}_{\rm i}$ parallel and antiparallel to SQA, respectively. (c) Electron momenta in elliptically polarized (linearly polarized) plane waves. The colored circles indicate the photon emission points in the laser field and the corresponding electron final momenta. The red-up (blue-down) arrows indicate “pin-up” (“spin-down”) with respect to $+y$ axis in panel (c2) and panel (c3)[71].

    图 5  相对相位$\phi=\pi/2$时 (a)横向电场分量$E_x$随激光相位$\eta$的变化; (b)平均极化度$\overline{S}_y$在横向和纵向动量$p_x$, $p_z$上的分布; (c)电子数密度的分布; (d)自旋向上(红色实线)与自旋向下(蓝色虚线)电子的能谱. 自旋向上与自旋向下分别指电子自旋平行或者反平行于$+y$方向[77]

    Fig. 5.  $\phi=\pi/2$: (a) Laser field $E_x$ with respect to $\eta$; (b) distribution of the average polarization $\overline{S}_y$ vs. longitudinal and transverse momenta $p_x$ and $p_z$, respectively; (c) number density distributions of electrons vs. $p_x$ and $p_z$; (d) energy spectra of spin-up and spin-down electrons, respectively. Note that “spin-up” and “spin-down” indicate the electron spin parallel and antiparallel to the $+y$ axis, respectively[77].

    图 6  激光尾场加速极化电子束示意图[17]

    Fig. 6.  Schematic layout of laser-wakefield-accelerated (LWFA) polarized electron beam[17].

    图 7  激光与电子束相互作用产生极化正电子束, 极化正电子束经尾场加速至GeV的示意图[108]

    Fig. 7.  Interaction scenario of polarization, trapping and acceleraction of positrons[108].

    图 8  (a)偏振光能谱, $s$表示散射光子的动量; (b)散射光子的偏振度[117]

    Fig. 8.  (a) Energy specturm of polarised photon; (b) polarization degree[117].

    图 9  (a)一束沿$+z$方向传播的任意偏振(AP)的激光脉冲与相向运动的纵向自旋极化(LSP)电子束对撞产生圆偏振(CP)伽马射线示意图; (b)一束沿$+z$方向传播的椭圆偏振(EP)激光脉冲与相向运动的横向自旋极化(TSP)电子束对撞产生线偏振(LP)伽马射线示意图[118]

    Fig. 9.  (a) An arbitrarily polarized (AP) laser pulse propagating along $+z$ direction and head-on colliding with a longitudinally spin-polarized (LSP) electron bunch produces circularly polarized (CP) $\gamma$-rays; (b) an elliptically polarized (EP) laser pulse propagating along $+z$ direction and head-on colliding with a transversely spin-polarized (TSP) electron bunch produces linearly polarized (LP) $\gamma$-rays[118].

    图 10  通过线性康普顿散射产生线偏振伽马射线示意图[119]

    Fig. 10.  Scenario of generating linear polarized $\gamma$-rays via nonlinear Compton scattering[119].

    Baidu
  • [1]

    Gay T 2009 Adv. At. Mol. Opt. Phys. 57 157

    [2]

    Abe K, Akagi T, Anthony P L, Antonov R, Arnold R G, Averett T, Breton V 1995 Phys. Rev. Lett. 75 25Google Scholar

    [3]

    Alexakhin V Y, Alexandrov Y, Alexeev G D, Alexeev M, Amoroso A, Badełek B, Becker M 2007 Phys. Lett. B 647 8Google Scholar

    [4]

    Androic D, Armstrong D S, Asaturyan A, Averett T, Balewski J, Beaufait J, Carlini R D 2013 Phys. Rev. Lett. 111 141803Google Scholar

    [5]

    Anthony P L, Arnold R G, Arroyo C, Baird K, Bega K, Biesiada J, Chen J P 2004 Phys. Rev. Lett. 92 181602Google Scholar

    [6]

    Moortgat-Pick G, Abe T, Alexander G, et al. 2008 Phys. Rep. 460 131Google Scholar

    [7]

    Olsen H, Maximon L C 1959 Phys. Rev. 114 887Google Scholar

    [8]

    Abbott D, Adderley P, Adeyemi A, et al. 2016 Phys. Rev. Lett. 116 214801Google Scholar

    [9]

    Swartz M L 1988 Physics with Polarized Beams Report (California: Stanford Linear Accelerator Center) No.SLAC-PUB-4656

    [10]

    Pierce D T, Meier F 1976 Phys. Rev. B 13 5484Google Scholar

    [11]

    Pierce D T, Meier F, Zürcher P 1975 Appl. Phys. Lett. 26 670Google Scholar

    [12]

    Redsun S G, Knize R J, Cates G D, Happer W 1990 Phys. Rev. A 42 1293Google Scholar

    [13]

    Batelaan H, Green A S, Hitt B A, Gay T J 1999 Phys. Rev. Lett. 82 4216Google Scholar

    [14]

    Paetz G S, Hans 2012 Nuclear Physics with Polarized Particles (BerLin: Springer) pp75–135

    [15]

    Matthias D, Carsten M 2017 Phys. Rev. Lett. 118 070403Google Scholar

    [16]

    Matthias D, Carsten M 2017 Phys. Rev. A 95 042124Google Scholar

    [17]

    Wen M, Tamburini M, Keitel C H 2019 Phys. Rev. Lett. 122 214801Google Scholar

    [18]

    Wu Y T, Ji L L, Geng X S, Yu Q, Wang N W, Feng B, Guo Z, Wang W Q, Qin C Y, Yan X, Zhang L G, Thomas J, Hützen A, Pukhov A, Büscher M, Shen B F, Li R X 2019 Phys. Rev. E 100 043202Google Scholar

    [19]

    Mane S R 1987 Phys. Rev. A 36 105Google Scholar

    [20]

    Derbenev Y S, Kondratenko A M 1973 Sov. Phys. JETP 37 1918

    [21]

    Baier V N, Katkov V M 1967 Phys. Lett. A 24 327Google Scholar

    [22]

    Sokolov A A, Ternov I M 1968 Synchrotron Radiation (Akademie: Berlin)

    [23]

    Alexander W C 1981 Nucl. Instrum. Methods 180 29Google Scholar

    [24]

    Baier V N 1972 Sov. Phys. Usp. 14 695Google Scholar

    [25]

    Sokolov A A, Ternov I M, Mikhailin V V 1976 Soviet Physics Journal 19 403Google Scholar

    [26]

    Hirose T, Dobashi K, Kurihara Y, Muto T, Omori T, Okugi T, Washio M 2000 Nucl. Instrum. Methods Phys. Res. A 455 15Google Scholar

    [27]

    Omori T, Fukuda M, Hirose T, Kurihara Y, Kuroda R, Nomura M, Ohashi A, Okugi T, Sakaue K, Saito T, Urakawa J, Washio M, Yamazaki I 2006 Phys. Rev. Lett. 96 114801Google Scholar

    [28]

    Alexander G, Barley J, Batygin Y, Berridge S C, Bharadwaj V, Bower G, Bugg W, Decker F J, Dollan R, Efremenko Y, Gharibyan V, Hast C, Iverson R, Kolanoski H, Kovermann J, Laihem K, Lohse T, McDonald K T, Mikhailichenko A A, Moortgat-Pick G A, Pahl P, Pitthan R, Pöschl R, ReinherzAronis E, Riemann S, Schälicke A, Schüler K P, Schweizer T, Scott D, Sheppard J C, Stahl A, Szalata Z M, Walz D, Weidemann A W 2008 Phys. Rev. Lett. 100 210801Google Scholar

    [29]

    Variola A 2014 Nucl. Instrum. Methods Phys. Res. A 740 21Google Scholar

    [30]

    Bragin S, Meuren S, Keitel C H, Piazza A D 2017 Phys. Rev. Lett. 119 250403Google Scholar

    [31]

    Nakamiya Y, Homma K 2017 Phys. Rev. D 96 053002Google Scholar

    [32]

    Céline B, Céline D, Olivier M, Vincent A C 2017 J. Cosmol. Astropart. Phys. 2017.05 043Google Scholar

    [33]

    Speth J, van der Woude A 1981 Rep. Prog. Phys. 44 719Google Scholar

    [34]

    Akbar Z, Roy P, Park S, et al. 2017 Phys. Rev. C 96 065209Google Scholar

    [35]

    Bocquet J P, Ajaka J, Anghinolfi M, et al. 1997 Nucl. Phys. A 622 c124Google Scholar

    [36]

    Ritus V I 1985 J. Sov. Laser Res. 6 497Google Scholar

    [37]

    Khokonov M K, Bekulova I Z 2010 Tech. Phys. 55 728Google Scholar

    [38]

    Baier V N, Katkov V M, Fadin V S 1973 Radiation from Relativistic Electrons (Moscow: Atomizdat)

    [39]

    Baier V N, Katkov V M, Strakhovenko V M 1998 Electromagnetic Processes at High Energies in Oriented Single Crystals (Singapore: World Scientific) p376

    [40]

    Uggerho J, Ulrik I 2005 Rev. Mod. phys. 77 1131Google Scholar

    [41]

    Timm U 1969 Coherent Bremsstrahlung of Electrons in Crystals (Hamburg: West Germany) pp766–769

    [42]

    Donna S, Gerard M 1985 Opt. Commun. 56 219Google Scholar

    [43]

    Yo O, Jin W, Cheonha J, Junghoon S, Seong K L, Hwang W L, Il W C, Hyung T K, Jae H S, Chang H N 2019 Opt. Express 27 20412Google Scholar

    [44]

    Colin D, Constantin H, Jake B, Thomas B, Jean-Christophe F C, Enam A C, Almantas G 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [45]

    John D J 2001 Classical Electrodynamics (3rd Ed.) (Beijing: Higher Education Press) p694

    [46]

    Berestetskii V B, Lifshits E M, Pitaevskii L P 2011 Quantum Electrodynamics (2nd Ed.) (Beijing: World Publishing Corporation)

    [47]

    Piazza A D, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [48]

    Bocaa M, Florescu V 2010 Eur. Phys. J. D 61 pp449-462Google Scholar

    [49]

    Seipt D, Kampfer B 2010 Phys. Rev. A 83 022101

    [50]

    Blackburn T G, Ilderton A, Murphy C D, Marklund M 2017 Phys. Rev. A 96 022128Google Scholar

    [51]

    Ivanov D Y, Kotkin G L, Serbo V G 2005 Eur. Phys. J. C 40 27Google Scholar

    [52]

    Seipt D, King B 2020 Phys. Rev. A 102 052805Google Scholar

    [53]

    Kirsebom K, Mikkelsen U, Uggerhøj E, Elsener K, Ballestrero S, Sona P, Vilakazi Z Z 2001 Phys. Rev. Lett. 87 054801Google Scholar

    [54]

    Bula C, McDonald K T, Prebys E J, Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L, Field R C, Horton-Smith G, Odian A C, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W 1996 Phys. Rev. Lett. 76 3116Google Scholar

    [55]

    Bamber C, Boege S J, Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A, Ragg W, Bula C, McDonald K T, Prebys E J, Burke D L, Field R C, HortonSmith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W 1999 Phys. Rev. D 60 092004Google Scholar

    [56]

    Panek P, Kaminski J Z 2002 Phys. Rev. A 65 022712Google Scholar

    [57]

    Krajewska K, Kaminski J Z 2013 Laser Part. Beams 31 503Google Scholar

    [58]

    Ehlotzky F, Krajewska K, Kamiński J Z 2009 Rep. Prog. Phys. 72 046401Google Scholar

    [59]

    Kotkin G L, Serbo V G, Telnov V I 2003 Phys. Rev. Spec. Top. Accel. Beams 6 011001Google Scholar

    [60]

    Dmitry V K 2011 Phys. Rev. A 84 062116Google Scholar

    [61]

    Poder K, Tamburini M, Sarri G, Piazza A D, Kuschel S, Baird C D, Behm K, Bohlen S, Cole J M, Corvan D J, Duff M, Gerstmayr E, Keitel C H, Krushelnick K, Mangles S P D, McKenna P, Murphy C D, Najmudin Z, Ridgers C P, Samarin G M, Symes D R, Thomas A G R, Warwick J, Zepf M 2018 Phys. Rev. X 8 031004Google Scholar

    [62]

    Cole J M, Behm K T, Gerstmayr E, et al. 2018 Phys. Rev. X 8 011020Google Scholar

    [63]

    Guo R T, Wang Y, Shaisultanov R, Wan F, Xu Z F, Chen Y Y, Li J X 2020 Phys. Rev. Research 2 033483Google Scholar

    [64]

    Del Sorbo D, Seipt D, Blackburn T G, Thomas A G R, Murphy C D, Kirk J G, Ridgers C P 2017 Phys. Rev. A 96 043407Google Scholar

    [65]

    Sorbo D D, Seipt D, Thomas A G R, Ridgers C P 2018 Plasma Phys. Controlled Fusion 60 064003Google Scholar

    [66]

    Seipt D, Sorbo D D, Ridgers C P, Thomas A G R 2018 Phys. Rev. A 98 023417Google Scholar

    [67]

    Piazza A D, Tamburini M, Meuren S, Keitel C H 2018 Phys. Rev. A 98 012134Google Scholar

    [68]

    Piazza A D, Tamburini M, Meuren S, Keitel C H 2019 Phys. Rev. A 99 022125Google Scholar

    [69]

    Ilderton A, King B, Seipt D 2019 Phys. Rev. A 99 042121Google Scholar

    [70]

    Khokonov M K, Nitta H 2002 Phys. Rev. Lett. 89 094801Google Scholar

    [71]

    Li Y F, Shaisultanov R, Hatsagortsyan K Z, Wan F, Keitel C H, Li J X 2019 Phys. Rev. Lett. 122 154801Google Scholar

    [72]

    Li J X, Hatsagortsyan K Z, Keitel C H 2014 Phys. Rev. Lett. 113 044801Google Scholar

    [73]

    Mølmer K, Castin Y 1996 J. Eur. Opt. Soc. Part B 8 49

    [74]

    Plenio M B, Knight P L 1998 Rev. Mod. Phys. 70 101Google Scholar

    [75]

    Geng X S, Ji L L, Shen B F, Feng B, Guo Z, Han Q Q, Qin C Y, Wang W Q, Wu Y T, Yan X, Yu Q, Zhang L G, Xu Z Z 2020 New J. Phys. 22 013007Google Scholar

    [76]

    Seipt D, Sorbo D D, Ridgers C P, Thomas A G R 2019 Phys. Rev. A 100 061402Google Scholar

    [77]

    Song H H, Wang W M, Li J X, Li Y F, Li Y T 2019 Phys. Rev. A 100 033407Google Scholar

    [78]

    Wu Y T, Ji L L, Geng X S, Yu Q, Wang N W, Feng B, Guo Z, Wang W Q, Qin C Y, Yan X, Zhang L G, Thomas J, Hützen A, Büscher M, Rakitzis T P, Pukhov A, Shen B F, Li R X 2019 New J. Phys. 21 073052Google Scholar

    [79]

    Steinke S, van Tilborg J, Benedetti C, Geddes C G R, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [80]

    Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett 111 165002Google Scholar

    [81]

    Dimitris S, Luis R L, Lykourgos B, Andrew J A, Rakitzis T P 2008 J. Chem. Phys. 129 144302Google Scholar

    [82]

    Dimitris S, Pavle G, Greta K, Jiang H Y, Lykourgos B, Samartzis P C, Alexander A, Rakitzis T P 2017 Phys. Rev. Lett. 118 233401Google Scholar

    [83]

    Dimitris S, Chrysovalantis S K, Gregoris K B, Rakitzis T P 2018 Phys. Rev. Lett. 121 083001Google Scholar

    [84]

    Rakitzis T P, Samartzis P C, Toomes R L, Kitsopoulos T N, Brown A, Balint-Kurti G G, Vasyutinskii O S and Beswick J A 2003 Science 300 1936Google Scholar

    [85]

    Rakitzis T P 2004 Eur. J. Chem. Phys. Phys. Chem. 5 1489Google Scholar

    [86]

    Jin L L, Wen M, Zhang X M, Hützen A, Johannes T, Büscher M, Shen B F 2020 Phys. Rev. E 102 011201Google Scholar

    [87]

    Hützen A, Thomas J, Böker J, Engels R, Gebel R, Lehrach A, Pukhov A, Rakitzis T P, Sofikitis D and Büscher M 2019 High Power Laser Sci. 7 E16Google Scholar

    [88]

    Burke D L, Field R C, G Horton S G, Spencer, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C, McDonald K T, Prebys E J, Bamber C, Boege S J, Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A, Ragg W 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [89]

    Hu H Y, Carsten M, Christoph H K 2010 Phys. Rev. Lett. 105 080401Google Scholar

    [90]

    Sarri G, Schumaker W, Piazza A D, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A 2013 Phys. Rev. Lett. 110 255002Google Scholar

    [91]

    Titov A I, Takabe H, Kampfer B, Hosaka A 2012 Phys. Rev. Lett. 108 240406Google Scholar

    [92]

    Obulkasim O, Li Z L, Xie B S, Reinhard A 2019 Phys. Rev. D 99 036003Google Scholar

    [93]

    Tobias N W 2020 Phys. Rev. D 101 076017Google Scholar

    [94]

    Wan F, Shaisultanov R, Li Y F, Hatsagortsyan K Z, Keitel C H, Li J X 2020 Phys. Lett. B 800 135120Google Scholar

    [95]

    Chen Y Y, He P L, Shaisultanov R, Hatsagortsyan K Z, Keitel C H 2019 Phys. Rev. Lett. 123 174801Google Scholar

    [96]

    Wan F, Wang Y, Guo R T, Chen Y Y, Shaisultanov R, Xu Z F, Keitel C H, Hatsagortsyan K Z, Li J X 2020 Phys. Rev. Res. 2 032049Google Scholar

    [97]

    Jansen M J A, Kamiński J Z, Krajewska K, Müller C 2016 Phys. Rev. D 94 013010Google Scholar

    [98]

    Li Y F, Chen Y Y, Wang W M, Hu H S 2020 Phys. Rev. Lett. 125 044802Google Scholar

    [99]

    Clarke J A, Malyshev O B, Scott D J, Bailey I R, Dainton J B, Hock K M, Jenner L J, Malysheva L I, Zang L, Baynham E, Bradshaw T W, Brummitt A J, Carr F S, Lintern A J, Rochford J, Bharadwaj V, Sheppard J, Bungau A, Collomb N A, Dollan R, Gai W 2011 EPAC’08, 11th European Particle Accelerator Conference Genoa, Italy, June 23–27, 2008 p1915

    [100]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [101]

    Chen P, Dawson J M, Huff R W, Katsouleas T 1985 Phys. Rev. Lett. 54 693Google Scholar

    [102]

    Nakajima K, Fisher D, Kawakubo T, Nakanishi H, Ogata A, Kato Y, Kitagawa Y, Kodama R, Mima K, Shiraga H, Suzuki K, Yamakawa K, Zhang T, Sakawa Y, Shoji T, Nishida Y, Yugami N, Downer M, Tajima T 1995 Phys. Rev. Lett. 74 4428Google Scholar

    [103]

    Vieira J, Mendonça J T 2014 Phys. Rev. Lett. 112 215001Google Scholar

    [104]

    Neeraj J, Antonsen J T M, Palastro J P 2015 Phys. Rev. Lett. 115 195001Google Scholar

    [105]

    Diederichs S, Mehrling T J, Benedetti C, Schroeder C B, Knetsch A, Esarey E, Osterhoff J 2019 Phys. Rev. Accel. Beams 22 081301Google Scholar

    [106]

    Yi L Q, Shen B F, Ji L L, Lotov K, Sosedkin A, Zhang X M, Wang W P, Xu J C, Shi Y, Zhang L G, Xu Z Z 2014 Sci. Rep. 4 1

    [107]

    Xu Z L, Yi L Q, Shen B F, Xu J C, Ji L L, Xu T J, Zhang L G, Li S, Xu Z Z 2020 Commun. Phys. 3 1Google Scholar

    [108]

    Liu W Y, Xue K, Wan F, Chen M, Li J X, Liu F, Weng S M, Sheng Z M, Zhang J 2020 arXiv: 2011.00156 v1 [physics.plasm-ph]

    [109]

    Giulietti A, Bourgeois N, Ceccotti T, Davoine X, Dobosz S, D’Oliveira P, Galimberti M, Galy J, Gamucci A, Giulietti D, Gizzi L A, Hamilton D J, Lefebvre E, Labate L, Marques J R, Monot P, Popescu H, Reau F, Sarri G, Tomassini P, Martin P 2008 Phys. Rev. Lett. 101 105002Google Scholar

    [110]

    Schumaker W, Sarri G, Vargas M, Zhao Z, Behm K, Chvykov V, Dromey B, Hou B, Maksimchuk A, Nees J, Yanovsky V, Zepf M, Thomas A G R, Krushelnick K 2014 Phys. Plasmas 21 056704Google Scholar

    [111]

    Félicie A, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001Google Scholar

    [112]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A D, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801

    [113]

    Yan W C, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B Z, Zhang J, Liu C, Chen M, Chen S Y, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar

    [114]

    Ivanov D Y, Kotkin G L, Serbo V G 2004 Eur. Phys. J. C 36 127Google Scholar

    [115]

    Wistisen T N, Piazza A D 2019 Phys. Rev. D 100 116001Google Scholar

    [116]

    King B, Tang S 2020 Phys. Rev. A 102 022809Google Scholar

    [117]

    Tang S, King B, Hu H 2020 Phys. Lett. B 809 135701Google Scholar

    [118]

    Li Y F, Shaisultanov R, Chen Y Y, Wan F, Hatsagortsyan K Z, Keitel C H, Li J X 2020 Phys. Rev. Lett. 124 014801Google Scholar

    [119]

    Xue K, Dou Z K, Wan F, Yu T P, Wang W M, Ren J R, Zhao W, Zhao Y T, Xu Z F, Li J X 2020 Matter Radiat. Extremes 5 054402Google Scholar

  • [1] 管桦, 戚晓秋, 陈邵龙, 史庭云, 高克林. 锂离子精密光谱与核结构信息.  , 2024, 73(20): 204203. doi: 10.7498/aps.73.20241128
    [2] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展.  , 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [3] 肖峥嵘, 张恒之, 华林强, 唐丽艳, 柳晓军. 极紫外波段的少电子原子精密光谱测量.  , 2024, 73(20): 204205. doi: 10.7498/aps.73.20241231
    [4] 李靖, 刘运全. 基于相对论自由电子的量子物理.  , 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [5] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流.  , 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [6] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展.  , 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [7] 郑昕, 孙羽, 陈娇娇, 胡水明. 氦原子2 3S–2 3P精密光谱研究.  , 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [8] 王少义, 谭放, 吴玉迟, 范全平, 矫金龙, 董克攻, 钱凤, 曹磊峰, 谷渝秋. 基于半解析自洽理论研究相对论激光脉冲驱动下阿秒X射线源的产生.  , 2017, 66(20): 204205. doi: 10.7498/aps.66.204205
    [9] 王剑, 蔡达锋, 赵宗清, 谷渝秋. 激光与近相对论临界密度薄层相互作用产生大电量高能电子束.  , 2017, 66(7): 075203. doi: 10.7498/aps.66.075203
    [10] 白易灵, 张秋菊, 田密, 崔春红. 超相对论强度激光与薄膜靶作用中0.4 nm以下X射线阿秒脉冲的产生.  , 2013, 62(12): 125206. doi: 10.7498/aps.62.125206
    [11] 闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生.  , 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [12] 静国梁, 余 玮, 李英骏, 赵诗华, 钱列加, 田友伟, 刘丙辰. 非相对论线偏振激光下的J×B加热.  , 2006, 55(7): 3475-3479. doi: 10.7498/aps.55.3475
    [13] 田友伟, 余 玮, 陆培祥, 何 峰, 马法君, 徐 涵, 静国梁, 钱列加. 紧聚焦的超短超强激光脉冲在真空中加速斜入射的相对论电子.  , 2005, 54(9): 4208-4212. doi: 10.7498/aps.54.4208
    [14] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速.  , 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [15] 黄华, 范植开, 谭杰, 马乔生, 甘延青, 常安碧. 长脉冲相对论速调管中束流脉冲缩短的研究.  , 2004, 53(4): 1129-1135. doi: 10.7498/aps.53.1129
    [16] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应.  , 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [17] 傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民. 相对论Birkhoff系统动力学研究.  , 2001, 50(12): 2289-2295. doi: 10.7498/aps.50.2289
    [18] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征.  , 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
    [19] 石秉仁. 相对论性电子束的类Tokamak平衡.  , 1983, 32(4): 507-514. doi: 10.7498/aps.32.507
    [20] 李福利. 用负温度高能离子束的相对论多普勒效应实现从红外到X射线连续调谐激光器.  , 1980, 29(4): 429-438. doi: 10.7498/aps.29.429
计量
  • 文章访问数:  6802
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-01-21
  • 上网日期:  2021-04-02
  • 刊出日期:  2021-04-20

/

返回文章
返回
Baidu
map