搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案

董旭 黄永盛 唐光毅 陈姗红 司梅雨 张建勇

引用本文:
Citation:

基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案

董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇

Circular electron-positron collider beam energy measurement scheme based on microwave-electronic Compton backscattering

Dong Xu, Huang Yong-Sheng, Tang Guang-Yi, Chen Shan-Hong, Si Mei-Yu, Zhang Jian-Yong
PDF
HTML
导出引用
  • 环形正负电子对撞机(CEPC)束流能量的精确标定是希格斯粒子质量宽度、W/Z玻色子质量的精确测量, 从而精确检验标准模型的基本实验依据. 基于此, 束流能量的误差控制要求在10–5水平. 康普顿背散射方法是适用于百GeV高能电子对撞机束流能量高精度标定的测量方法. 本文拟采用微波电子康普顿背散射后对散射光子能量的精确测量, 来反推CEPC束流能量, 理论预计精度可达到3 MeV左右. 首先根据设计需求选定圆波导传输TM01模微波, 并求解该条件下的电磁场分布情况及坡印廷矢量. 根据波导内光子分布传输情况提出设计思路简化计算的复杂程度, 结合高纯锗探测器灵敏度、同步辐射本底等限制条件联立方程求解符合设计要求的参数. 使用最优的一组波导内径、微波波长、电子入射角数据求得微波功率为100 W时的微分散射截面对能量的导数及对撞亮度, 进一步求得15 MeV能量的散射光子数密度, 根据该能量下同步辐射光子数密度的大小分析了信噪比. 理论上论证了该方案的可行性并讨论了该方案有待进一步研究的技术难点与问题.
    The accurate calibration of the beam energy of the circular electron-positron collider (CEPC) is performed to accurately measure the mass width of Higgs particle and the mass of W/Z boson, thus providing the basic experimental basis for the accurate test of the standard model. Based on this, the error control of beam energy is required to be at a level of 10–5. Compton backscattering method is suitable for high precision calibration of beam energy in the Hundred GeV high energy electron collider. In this work, the CEPC beam energy is predicted to reach a theoretical accuracy of about 3 MeV by using the accurate measurement of the scattered photon energy after microwave electron Compton backscattering. Firstly, TM01 mode microwave transmission in circular waveguide is selected according to the design requirements, and the electromagnetic field distribution and Poynting vector under this condition are solved. According to the photon distribution and transmission in the waveguide, the design idea is proposed to simplify the complexity of calculation, and the parameters conforming to the design requirements are solved by combining the simultaneous equations of the high purity germanium detector sensitivity and the background of synchrotron radiation. Using the optimal set of waveguide inner diameter, microwave wavelength and electron incident angle data, the derivative of the differential scattering cross section with respect to energy and the collision brightness are obtained when the microwave power is 100 W. The scattered photon density of 15 MeV energy is further obtained, and the signal-to-noise ratio is analyzed according to the photon density of synchrotron radiation under this energy. The feasibility of the scheme is demonstrated theoretically and the technical difficulties and problems to be further studied are discussed.
      通信作者: 黄永盛, huangys82@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11655003)、创新项目IHEP(批准号: 542017IHEPZZBS11820, 542018IHEPZZBS12427)、中国科学院粒子物理卓越中心(CCEPP)和 IHEP创新(批准号: Y4545170Y2)资助的课题
      Corresponding author: Huang Yong-Sheng, huangys82@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11655003), the Innovation Project of IHEP, China (Grant Nos. 542017IHEPZZBS11820, 542018IHEPZZBS12427), the CAS Center for Excellence in Particle Physics (CCEPP), China, and IHEP Innovation, China (Grant No. Y4545170Y2)
    [1]

    Tanabashi M, Hagiwara K, Hikasa K, et al. 2018 Phys. Rev. D 98 030001

    [2]

    Ahmad ML A, DanieleA, et al. 2015 CEPC-SppC Preliminary Conceptual Design Report (Vol. Volume I: Physics and Detector) I 17

    [3]

    Achasov M N, Zhang JY, Muchnoi N Y 2017 Nucl. Part. Phys. Proc. 287 19

    [4]

    Compton A H 1923 Phys. Rev. 21 483Google Scholar

    [5]

    Verlinde E 1996 European School Of High-Energy Physics, Proceedings 96 1

    [6]

    Milburn R H 1963 Phys. Rev. Lett. 10 75Google Scholar

    [7]

    Arutyunian F R, Tumanian V A 1963 Phys. Lett. 4 176Google Scholar

    [8]

    Sandorfi A M, LeVine M J, Thorn C E, Giordano G, Matone G 1983 IEEE Trans. Nucl. Sci. 30 3083Google Scholar

    [9]

    Schoenlein R W, Leemans W P 1996 Science 274 236Google Scholar

    [10]

    Pogorelsky I V 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 411 172Google Scholar

    [11]

    Zhang J Y, Cai X, Mo X H, Fu C D, Tang G Y, Achasov M N, Muchnoi N Y, Nikolaev I B, Harris F A 2019 Nucl. Phys. B 939 391Google Scholar

    [12]

    Xiao-Hu M O 2014 Chin. Phys. C 38 106203Google Scholar

    [13]

    Zhang J Y, Fu C D, Mo X H, Zhang Z L, Li D W, Wang B Y 2011 Chin. Phys. C 35 660Google Scholar

    [14]

    Tang G Y, Chen S H, Chen Y, Duan Z, Ruan M Q, An G P, Huang Y S, Lou X C, Zhang J Y, Lan X F, Zhang C L 2020 Rev. Sci. Instrum. 91 033109Google Scholar

    [15]

    郭硕鸿 2008 电动力学 (北京: 高等教育出版社)第1−286页

    Guo S H 2008 Electrodynamics (Beijing: Higher Education Press) pp1−286(in Chinese)

    [16]

    赵凯华 1984 大学物理 1 1

    Zhao K H 1984 College Physics 1 1

    [17]

    Zhang J Y, Cai X, Mo X H, Guo D Z, Wang J L, Liu B Q, Achasov M N, Krasnov A A, Muchnoi N Y, Pyata E E, Mamoshkina E V, Harris F A 2016 Chin. Phys. C 40 076001Google Scholar

    [18]

    Shuiting X 2018 Research On Compton Scattering between Photon and High Energy Electron (Vol. I) (Wuhan: Wuhan University) pp1−13

    [19]

    Mobilio S, Boscherini F, Meneghini C 2015 Synchrotron Radiation Basics, Methods and Applications (Berlin Heidelberg: Springer-Verlag) pp1−799

    [20]

    White S M, Burkhardt H, Puzo P 2010 Université Paris-Sud: CERN CERN-THESIS-2010-139 154

    [21]

    Nickolai Muchnoi N S U a N, IYF 2018 arXiv: 1803.09595 v1 [hep-ph

    [22]

    Suzuki T https://inspirehep.net/literature/111239[2021-7-5]

    [23]

    Si M Y, Huang Y S 2021 Rev. Sci. Instrum.

  • 图 1  圆形波导及坐标系

    Fig. 1.  Circular waveguide and coordinate system

    图 2  波导中坡印廷矢量变化情况 (a)各分量沿ρ方向变化情况; (b) 各分量沿z方向变化情况; (c)坡印廷矢量z分量在空间中的变化情况; (d) 坡印廷矢量ρ分量在空间中的变化情况

    Fig. 2.  Poynting vector variation in the waveguide: (a) The variations of each Poynting vector’s components along the ρ axis; (b) the variations of each Poynting vector’s components along the z axis; (c)variations of the z component of Poynting vector in space; (d) variations of the ρ component of Poynting vector in space.

    图 3  微波法设计图

    Fig. 3.  Design drawings for microwave measurement method.

    图 4  单模传输波长-内径解

    Fig. 4.  Solution of wavelength and inner diameter for single mode transmission.

    图 5  散射光子不同能量对应的dσ/dω

    Fig. 5.  Different energies of scattered photons corresponding to the dσ/dω.

    图 6  电子束团、微波统一坐标系

    Fig. 6.  Unified coordinate system for electron beam cluster and microwave.

    表 1  CEPC同步辐射参数值

    Table 1.  Parameters of CEPC synchrotron radiation.

    参数符号单位
    束流能量E120GeV
    束流电流I17.4mA
    转弯半径ρ10900m
    单位长度功率P435W/m
    临界能量Ec351.6keV
    弯转角θ2.844mrad
    张角φ4.258Μ.25
    下载: 导出CSV

    表 2  单模传输时微波-电子系统各参数值

    Table 2.  Parameters of microwave-electronic system in single mode transmission.

    a/mλ/mvgcosψ/cosθTz/mTt/S
    6.35 × 10–31.39 × 10–25.45 × 10–1c5.45 × 10–11.28 × 10–27.80 × 10–11
    5.5 × 10–31.30 × 10–24.46 × 10–1c4.46 × 10–11.46 × 10–21.09 × 10–10
    4.76 × 10–31.18 × 10–23.13 × 10–1c3.13 × 10–11.89 × 10–22.01 × 10–10
    4.17 × 10–31.07 × 10–21.88 × 10–1c1.88 × 10–12.85 × 10–25.05 × 10–10
    3.57 × 10–39.32 × 10–23.54 × 10–1c3.54 × 10–11.32 × 10–21.24 × 10–8
    3.18 × 10–38.27 × 10–28.12 × 10–1c8.12 × 10–15.09 × 10–22.09 × 10–9
    2.78 × 10–37.11 × 10–22.11 × 10–1c2.11 × 10–11.69 × 10–22.67 × 10–10
    2.39 × 10–35.84 × 10–23.51 × 10–1c3.51 × 10–18.32 × 10–37.91 × 10–11
    2.18 × 10–35.16 × 10–34.26 × 10–1c4.26 × 10–16.06 × 10–34.74 × 10–11
    下载: 导出CSV
    Baidu
  • [1]

    Tanabashi M, Hagiwara K, Hikasa K, et al. 2018 Phys. Rev. D 98 030001

    [2]

    Ahmad ML A, DanieleA, et al. 2015 CEPC-SppC Preliminary Conceptual Design Report (Vol. Volume I: Physics and Detector) I 17

    [3]

    Achasov M N, Zhang JY, Muchnoi N Y 2017 Nucl. Part. Phys. Proc. 287 19

    [4]

    Compton A H 1923 Phys. Rev. 21 483Google Scholar

    [5]

    Verlinde E 1996 European School Of High-Energy Physics, Proceedings 96 1

    [6]

    Milburn R H 1963 Phys. Rev. Lett. 10 75Google Scholar

    [7]

    Arutyunian F R, Tumanian V A 1963 Phys. Lett. 4 176Google Scholar

    [8]

    Sandorfi A M, LeVine M J, Thorn C E, Giordano G, Matone G 1983 IEEE Trans. Nucl. Sci. 30 3083Google Scholar

    [9]

    Schoenlein R W, Leemans W P 1996 Science 274 236Google Scholar

    [10]

    Pogorelsky I V 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 411 172Google Scholar

    [11]

    Zhang J Y, Cai X, Mo X H, Fu C D, Tang G Y, Achasov M N, Muchnoi N Y, Nikolaev I B, Harris F A 2019 Nucl. Phys. B 939 391Google Scholar

    [12]

    Xiao-Hu M O 2014 Chin. Phys. C 38 106203Google Scholar

    [13]

    Zhang J Y, Fu C D, Mo X H, Zhang Z L, Li D W, Wang B Y 2011 Chin. Phys. C 35 660Google Scholar

    [14]

    Tang G Y, Chen S H, Chen Y, Duan Z, Ruan M Q, An G P, Huang Y S, Lou X C, Zhang J Y, Lan X F, Zhang C L 2020 Rev. Sci. Instrum. 91 033109Google Scholar

    [15]

    郭硕鸿 2008 电动力学 (北京: 高等教育出版社)第1−286页

    Guo S H 2008 Electrodynamics (Beijing: Higher Education Press) pp1−286(in Chinese)

    [16]

    赵凯华 1984 大学物理 1 1

    Zhao K H 1984 College Physics 1 1

    [17]

    Zhang J Y, Cai X, Mo X H, Guo D Z, Wang J L, Liu B Q, Achasov M N, Krasnov A A, Muchnoi N Y, Pyata E E, Mamoshkina E V, Harris F A 2016 Chin. Phys. C 40 076001Google Scholar

    [18]

    Shuiting X 2018 Research On Compton Scattering between Photon and High Energy Electron (Vol. I) (Wuhan: Wuhan University) pp1−13

    [19]

    Mobilio S, Boscherini F, Meneghini C 2015 Synchrotron Radiation Basics, Methods and Applications (Berlin Heidelberg: Springer-Verlag) pp1−799

    [20]

    White S M, Burkhardt H, Puzo P 2010 Université Paris-Sud: CERN CERN-THESIS-2010-139 154

    [21]

    Nickolai Muchnoi N S U a N, IYF 2018 arXiv: 1803.09595 v1 [hep-ph

    [22]

    Suzuki T https://inspirehep.net/literature/111239[2021-7-5]

    [23]

    Si M Y, Huang Y S 2021 Rev. Sci. Instrum.

  • [1] 李传可, 林南省, 周鲜鲜, 江淼, 李英骏. 双振荡场产生正负电子对的理论研究.  , 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [2] 叶全兴, 何广朝, 王倩. 正负电子对撞中类底夸克偶素的线形.  , 2023, 72(20): 201401. doi: 10.7498/aps.72.20230908
    [3] 罗蕙一, 江淼, 徐妙华, 李英骏. 不同频率的组合振荡场下产生正负电子对.  , 2023, 72(2): 021201. doi: 10.7498/aps.72.20221660
    [4] 牟家连, 吕军光, 孙希磊, 兰小飞, 黄永盛. 环形正负电子对撞机带电粒子鉴别的飞行时间探测器.  , 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [5] 谢柏松, 李烈娟, 麦丽开·麦提斯迪克, 王莉. 频率啁啾对强场下真空正负电子对产生的增强效应.  , 2022, 71(13): 131201. doi: 10.7498/aps.71.20220148
    [6] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展.  , 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [7] 屈奎, 张荣福, 肖鹏程. 基于调频连续波雷达的物体运动状态实时检测算法研究.  , 2021, 70(19): 198402. doi: 10.7498/aps.70.20210205
    [8] 李昂, 余金清, 陈玉清, 颜学庆. 光子对撞机产生正负电子对的数值方法.  , 2020, 69(1): 019501. doi: 10.7498/aps.69.20190729
    [9] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计.  , 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [10] 张华, 陈少平, 龙洋, 樊文浩, 王文先, 孟庆森. 微波低温制备Mg2Si0.4Sn0.6-yBiy热电材料的传输机理.  , 2015, 64(24): 247302. doi: 10.7498/aps.64.247302
    [11] 古宇飞, 闫镔, 李磊, 魏峰, 韩玉, 陈健. 基于全变分最小化和交替方向法的康普顿散射成像重建算法.  , 2014, 63(1): 018701. doi: 10.7498/aps.63.018701
    [12] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究.  , 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [13] 王丰, 贾国柱, 刘莉, 刘凤海, 梁文海. 温度相关的微波频率下氯化钠水溶液介电特性.  , 2013, 62(4): 048701. doi: 10.7498/aps.62.048701
    [14] 杨晶, 刘国宾, 顾思洪. 平行线偏光激发CPT共振方案实验研究.  , 2012, 61(4): 043202. doi: 10.7498/aps.61.043202
    [15] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演.  , 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [16] 郑鸿, 杨成韬. 磁电薄膜与微波作用研究.  , 2010, 59(7): 5055-5060. doi: 10.7498/aps.59.5055
    [17] 葛愉成. 激光-电子康普顿散射物理特性研究.  , 2009, 58(5): 3094-3103. doi: 10.7498/aps.58.3094
    [18] 罗辽复, 陆埮. 高能正负电子对的湮没与超窄共振ψ粒子的作用.  , 1975, 24(2): 145-150. doi: 10.7498/aps.24.145
    [19] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象.  , 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
    [20] 徐永昌, 郑林生. 在γ-γ符合测量中康普顿散射所引起的符合.  , 1958, 14(2): 114-120. doi: 10.7498/aps.14.114
计量
  • 文章访问数:  5137
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-01-25
  • 上网日期:  2021-06-26
  • 刊出日期:  2021-07-05

/

返回文章
返回
Baidu
map