搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象

吴广智 王强 周沧涛 傅立斌

引用本文:
Citation:

双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象

吴广智, 王强, 周沧涛, 傅立斌

Positron wave interference and Klein tunnel during the production of pairs in the double-well potential

Wu Guang-Zhi, Wang Qiang, Zhou Cang-Tao, Fu Li-Bin
PDF
导出引用
  • 通过将狄拉克场量子化并且数值求解狄拉克方程的方法研究在一维情况下双势阱激发正负电子对产生的过程.研究发现双势阱激发的正电子波在双势阱之间会出现干涉现象,过程中伴随着克莱因隧穿效应,并且在双势阱之间的距离取正电子波对应的驻波条件时,在双势阱之间会表现出驻波形式的正电子干涉波.并且驻波的出现对正负电子对的产生过程也存在相应的影响,驻波最终会通过克莱因隧穿效应衰减消失.
    In this paper, the electron-positron creation process in a double well scheme is investigated. A series of simulations is conducted by solving the quantized Dirac equation numerically. Here the split operator scheme is used to solve the Dirac equation, and the Fourier analysis is adopted to study the evolution of the wave function. The evolution starts from the state that all the negative energy eigenstates are occupied. By projecting the time dependent wave function to the positive energy eigenstates, the distributions of electrons and positrons in coordinate space and momentum space would be calculated. The total number of the electrons and positrons can be obtained by integrating the momentum distributions, and the number of the positrons in different parts of coordinate space can be achieved by integrating the space distributions. At first the electron-positron is created at the double-well edge, and positrons are emitted from the edges of double-well potential and propagate out while the electrons are bounded by the barriers. It is found that when the positron waves from different double-well edges encounter in the double-well for the first time, there occurs no positron wave interference phenomenon. The wave interference emerges after the positron no indent wave is reflected by the barriers. At the same time, because of Klein tunneling the number of positrons outside the double well begin to surpass the positrons inside the double well. After a piece of time, the amplitude of interference wave would reach its peak, and then collapses since Klein tunneling. If the double-well potential meets the standing-wave conditions, a stationary wave would be found before the interference wave reaches its peak if the distance between the double wells is short, and a stationary wave would be found after the interference wave has reached its peak if the distance between the double wells is long. And the stationary wave occurs when the positron wave is reflected by the barriers for the second time. The occurring of the stationary wave would affect the pairs producing process by making the number of pairs fluctuate. Because of Klein tunneling, the wave packages close to the double-well would disappear first, and the others can last for a longer time when the standing-wave condition is fulfilled, but all of the stationary wave packages disappear in the double well finally. And there is barely no positrons left inside the double well to the end since Klein tunneling.
      通信作者: 吴广智, wuguangzhitc@126.com
    • 基金项目: 国家重点研发计划(批准号:2016YFA0401100)、国家自然科学基金(批准号:11374040)、国家重点基础研究发展计划(批准号:2013CB834100)和NSAF联合基金(批准号:U1630246)资助的课题.
      Corresponding author: Wu Guang-Zhi, wuguangzhitc@126.com
    • Funds: Project supported by the National Key Program for ST Research and Development (Grant No. 2016YFA0401100), the National Natural Science Foundation of China (Grant No. 11374040), the National Basic Research Program of China Project (Grant No. 2013CB834100), and the NSAF (Grant No. U1630246).
    [1]

    Schwinger J 1951 Phys. Rev. 82 664

    [2]

    Piazza A D, Hatsagortsyan K Z, Keitel C H 2008 Phys. Rev. Lett. 100 010403

    [3]

    Piazza A D, Milstein A I, Keitel C H 2007 Phys. Rev. A 76 032103

    [4]

    Salamin Y I, Hu S X, Hatsagortsyan K Z, Keitel C H 2006 Phys. Rep. 427 41

    [5]

    Wollert A, Klaiber M, Bauke H, Keitel C H 2015 Phys. Rev. D 91 065022

    [6]

    Piazza A D, Lotstedt E, Milstein A I, Keitel C H 2009 Phys. Rev. Lett. 103 170403

    [7]

    Bulanov S S, Mur V D, Narozhny N B, Nees J, Popov V S 2010 Phys. Rev. Lett. 104 220404

    [8]

    Narozhny N B, Fedotov A M 2014 Eur. Phys. J:Spec. Top. 223 1083

    [9]

    Gelfer E G, Mur V D, Narozhny N B, Fedotov A M 2011 J. Exp. Theor. Phys. 113 934

    [10]

    Dunne G V, Schubert C 2005 Phys. Rev. D 72 105004

    [11]

    Dunne G V, Wang Q H, Gies H, Schubert C 2006 Phys. Rev. D 73 065028

    [12]

    Dunne G V, Wang Q H 2006 Phys. Rev. D 74 065015

    [13]

    Dietrich D D, Dunne G V 2011 Phys. Rev. D 84 125023

    [14]

    Dumlu C K, Dunne G V 2011 Phys. Rev. D 84 125023

    [15]

    Holstein B R 1998 Am. J. Phys. 66 507

    [16]

    Krekora P, Su Q, Grobe R 2004 Phys. Rev. Lett. 92 040406

    [17]

    Lamb K D, Gerry C C, Su Q, Grobe R 2007 Phys. Rev. A 75 013425

    [18]

    Dombey N, Calogeracos A 1999 Phys. Rep. 315 41

    [19]

    Krekora P, Su Q, Grobe R 2004 Phys. Rev. Lett. 93 043004

    [20]

    Sari R A, Suparmi A, Cari C 2016 Chin. Phys. B 25 10301

    [21]

    Kurniawan A, Suparmi A, Cari C 2015 Chin. Phys. B 24 30302

    [22]

    Krekora P, Cooley K, Su Q, Grobe R 2005 Phys. Rev. Lett. 95 070403

    [23]

    Liu Y, Jiang M, L Q Z, Li Y T, Grobe R, Su Q 2014 Phys. Rev. A 89 012127

  • [1]

    Schwinger J 1951 Phys. Rev. 82 664

    [2]

    Piazza A D, Hatsagortsyan K Z, Keitel C H 2008 Phys. Rev. Lett. 100 010403

    [3]

    Piazza A D, Milstein A I, Keitel C H 2007 Phys. Rev. A 76 032103

    [4]

    Salamin Y I, Hu S X, Hatsagortsyan K Z, Keitel C H 2006 Phys. Rep. 427 41

    [5]

    Wollert A, Klaiber M, Bauke H, Keitel C H 2015 Phys. Rev. D 91 065022

    [6]

    Piazza A D, Lotstedt E, Milstein A I, Keitel C H 2009 Phys. Rev. Lett. 103 170403

    [7]

    Bulanov S S, Mur V D, Narozhny N B, Nees J, Popov V S 2010 Phys. Rev. Lett. 104 220404

    [8]

    Narozhny N B, Fedotov A M 2014 Eur. Phys. J:Spec. Top. 223 1083

    [9]

    Gelfer E G, Mur V D, Narozhny N B, Fedotov A M 2011 J. Exp. Theor. Phys. 113 934

    [10]

    Dunne G V, Schubert C 2005 Phys. Rev. D 72 105004

    [11]

    Dunne G V, Wang Q H, Gies H, Schubert C 2006 Phys. Rev. D 73 065028

    [12]

    Dunne G V, Wang Q H 2006 Phys. Rev. D 74 065015

    [13]

    Dietrich D D, Dunne G V 2011 Phys. Rev. D 84 125023

    [14]

    Dumlu C K, Dunne G V 2011 Phys. Rev. D 84 125023

    [15]

    Holstein B R 1998 Am. J. Phys. 66 507

    [16]

    Krekora P, Su Q, Grobe R 2004 Phys. Rev. Lett. 92 040406

    [17]

    Lamb K D, Gerry C C, Su Q, Grobe R 2007 Phys. Rev. A 75 013425

    [18]

    Dombey N, Calogeracos A 1999 Phys. Rep. 315 41

    [19]

    Krekora P, Su Q, Grobe R 2004 Phys. Rev. Lett. 93 043004

    [20]

    Sari R A, Suparmi A, Cari C 2016 Chin. Phys. B 25 10301

    [21]

    Kurniawan A, Suparmi A, Cari C 2015 Chin. Phys. B 24 30302

    [22]

    Krekora P, Cooley K, Su Q, Grobe R 2005 Phys. Rev. Lett. 95 070403

    [23]

    Liu Y, Jiang M, L Q Z, Li Y T, Grobe R, Su Q 2014 Phys. Rev. A 89 012127

  • [1] 李传可, 林南省, 周鲜鲜, 江淼, 李英骏. 双振荡场产生正负电子对的理论研究.  , 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [2] 牟家连, 吕军光, 孙希磊, 兰小飞, 黄永盛. 环形正负电子对撞机带电粒子鉴别的飞行时间探测器.  , 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [3] 叶全兴, 何广朝, 王倩. 正负电子对撞中类底夸克偶素的线形.  , 2023, 72(20): 201401. doi: 10.7498/aps.72.20230908
    [4] 罗蕙一, 江淼, 徐妙华, 李英骏. 不同频率的组合振荡场下产生正负电子对.  , 2023, 72(2): 021201. doi: 10.7498/aps.72.20221660
    [5] 谢柏松, 李烈娟, 麦丽开·麦提斯迪克, 王莉. 频率啁啾对强场下真空正负电子对产生的增强效应.  , 2022, 71(13): 131201. doi: 10.7498/aps.71.20220148
    [6] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉.  , 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [7] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展.  , 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [8] 江淼, 郑晓冉, 林南省, 李英骏. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应.  , 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [9] 李昂, 余金清, 陈玉清, 颜学庆. 光子对撞机产生正负电子对的数值方法.  , 2020, 69(1): 019501. doi: 10.7498/aps.69.20190729
    [10] 刘晓威, 张可烨. 有效质量法调控原子玻色-爱因斯坦凝聚体的双阱动力学.  , 2017, 66(16): 160301. doi: 10.7498/aps.66.160301
    [11] 黄政, 龙超云, 周勋, 徐明. 双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究.  , 2016, 65(15): 157301. doi: 10.7498/aps.65.157301
    [12] 黄芳, 李海彬. 双势阱中玻色-爱因斯坦凝聚的绝热隧穿.  , 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [13] 周远明, 俞国林, 高矿红, 林铁, 郭少令, 褚君浩, 戴宁. 弱耦合GaAs/AlGaAs/InGaAs双势阱隧穿结构的磁隧穿特性研究.  , 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [14] 曹辉, 赵清. 双势阱中冷原子的关联隧穿.  , 2010, 59(4): 2187-2192. doi: 10.7498/aps.59.2187
    [15] 毕冬艳. 一个特殊模型中的相干布居俘获.  , 2008, 57(8): 4685-4688. doi: 10.7498/aps.57.4685
    [16] 房永翠, 杨志安, 杨丽云. 对称双势阱玻色-爱因斯坦凝聚系统在周期驱动下的动力学相变及其量子纠缠熵表示.  , 2008, 57(2): 661-666. doi: 10.7498/aps.57.661
    [17] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响.  , 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [18] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应.  , 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [19] 曹冬梅, 李永放, 毕冬艳, 王利强, 成延春. 静电场作用下双势阱分子隧道效应的猝灭及能级裂距的非线性特性研究.  , 2004, 53(8): 2444-2449. doi: 10.7498/aps.53.2444
    [20] 罗辽复, 陆埮. 高能正负电子对的湮没与超窄共振ψ粒子的作用.  , 1975, 24(2): 145-150. doi: 10.7498/aps.24.145
计量
  • 文章访问数:  7225
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-07
  • 修回日期:  2017-01-13
  • 刊出日期:  2017-04-05

/

返回文章
返回
Baidu
map