搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维地形频率域井筒电磁场区域积分方程法模拟

李静和 何展翔 孟淑君 杨俊 李文杰 廖小倩

引用本文:
Citation:

三维地形频率域井筒电磁场区域积分方程法模拟

李静和, 何展翔, 孟淑君, 杨俊, 李文杰, 廖小倩

Domain decomposition based integral equation modeling of 3-dimensional topography in frequency domain for well electromagnetic field

Li Jing-He, He Zhan-Xiang, Meng Shu-Jun, Yang Jun, Li Wen-Jie, Liao Xiao-Qian
PDF
HTML
导出引用
  • 井筒电磁法作为一种高效的地球物理勘探技术特别适合我国地形复杂地区(沙漠、高山等)的油气资源勘探. 地形起伏区域对井筒电磁响应的观测具有严重影响, 但到目前为止人们对三维井筒电磁地形效应特征的研究十分有限. 本文提出基于区域划分的积分方程法模拟带地形频率域井筒电磁系统响应, 与基于偏微分方程的有限差分、有限单元法相比, 该方法能更高效地模拟地形响应. 首先根据地形起伏情况定义感应数, 将地形条件下目标体的井筒电磁场模拟区域划分为参考模型、背景介质及目标体介质分布子区域, 针对各子区域的模拟计算特点, 配置Anderson算法、稳定型双共轭梯度-快速傅里叶积分方程算法, 从而获得三维地形频率域井筒电磁场响应. 通过将计算结果与半空间模型的Anderson算法解析解、带山谷地形模型的其他已发表的三维边界积分方程结果进行对比, 检验了本文算法的精度及高效性. 最后, 系统分析了山谷地形对井筒电磁地井观测系统电磁场响应的影响特征. 本文研究结果对三维井筒电磁地形效应的识别和校正具有指导意义.
    As an efficient geophysical exploration technology, well electromagnetic method is particularly applicable to oil and gas exploration in China's complex terrain areas (deserts, mountains, etc.). A serious influence of topographic relief area on the electromagnetic response of well is inevitable but challenging. To the best of our knowledge, there is no literature on modeling the electromagnetic response of three-dimensional (3D) topography with well electromagnetic method. Based on the domain decomposition, an integral equation method is presented to simulate the electromagnetic response of 3D topography in frequency domain via the well electromagnetic method. Compared with the finite difference and finite element method based on partial differential equation, this method is very efficient in simulating topographic response without huge computation or truncation boundary error accumulation or special boundary condition requirements. Firstly, an induction coefficient is defined according to the topographic relief situation. Then the computational domain consisting of the target body, background medium and 3D topography is divided into reference model, background medium and the distribution of target body medium area. According to the characteristics of each sub-region, Anderson algorithm is an analytic solution based on Gaussian filtering, which is used to provide the primary field from the excited sources in surface. And then, the stable double conjugate gradient-fast Fourier transform is incorporated into integral equation algorithm to obtain the fast 3D terrain shaft frequency domain electromagnetic responses. By comparing the calculation results using the new algorithm presented in this paper with the analytical solutions of Anderson algorithm for half-space model with surface electromagnetic method, the precision and the efficiency of this new algorithm are demonstrated. And the ability to model the electromagnetic responses of 3D topography is shown by comparing with the published results of 3D boundary integral equation. Thus, the high accuracy and high efficiency of the new algorithm presented in this paper are validated. Finally, the influence of 3D valley topography on electromagnetic field response of surface to borehole electromagnetic (SBEM) observation system is presented and analyzed. It is observed that the response of SBEM is seriously disturbed by the field of 3D valley topography which is necessarily removed. The research results presented in this paper are of significance for guiding the identification and correction of electromagnetic topographic effect from 3D SBEM.
      通信作者: 李静和, lijinghe7513@163.com
    • 基金项目: 国家自然科学基金(批准号: 41604097)和桂林理工大学科研启动经费(批准号: 002401003503)资助的课题.
      Corresponding author: Li Jing-He, lijinghe7513@163.com
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 41604097) and the Research Foundation from Guilin University of Technology, China (Grant No. 002401003503).
    [1]

    Augustin A, Kennedy W, Morrison H 1989 Geophysics 54 90Google Scholar

    [2]

    李静和, 何展翔, 吕玉增 2011 工程地球 8 303Google Scholar

    Li J H, He Z X, Lü Y Z 2011 Chin. J. Eng. Geophys. 8 303Google Scholar

    [3]

    Jahandari H, Ansari S, Farquharson C 2017 J. Appl. Geophys. 138 185Google Scholar

    [4]

    汤文武, 柳建新, 叶益信 2018 石油地球物理勘探 53 617

    Tang W W, Liu J X, Ye Y X 2018 Oil Geophys. Prosp. 53 617

    [5]

    Nornikman H, Pee N, Ahmad B 2018 JTEC 10 35

    [6]

    张烨, 林蔺, 陈桂波 2018 地球 61 1639Google Scholar

    Zhang Y, Lin L, Chen G B 2018 Chinese J. Geophys. 61 1639Google Scholar

    [7]

    魏宝君, 陈涛, 侯学理 2014 中国石油大学学报 38 57Google Scholar

    Wei B J, Chen T, Hou X L 2014 J. China Uni. Petrol. 38 57Google Scholar

    [8]

    郭成豹, 肖昌汉, 刘大明 2008 57 4182Google Scholar

    Guo C B, Xiao C H, Liu D M 2008 Acta Phys. Sin. 57 4182Google Scholar

    [9]

    陈桂波, 汪宏年, 姚敬金, 韩子夜 2009 58 3848Google Scholar

    Chen G B, Wang H N, Yao J J, Han Z Y 2009 Acta Phys. Sin. 58 3848Google Scholar

    [10]

    李静和, 何展翔 2012 石油地球物理勘探 47 653

    Li J H, He Z X 2012 Oil Geophys. Prosp. 47 653

    [11]

    Li J H, He Z X, Xu Y X 2017 Appl. Geophys. 14 559

    [12]

    Kruglyakov M, Kuvshinov A 2018 Geophys. J. Int. 213 1387Google Scholar

    [13]

    Tiberi G, Monorchio A, Manara G, Mittra R A 2006 IEEE T. Anteen. Propag. 54 2508Google Scholar

    [14]

    Nie X C, Yuan N, Liu C R 2010 IEEE Geosci. Remote. S. 48 72Google Scholar

    [15]

    Chobanyan E, Notaros B M, Ilic M M 2014 APSURSI 213 4

    [16]

    陈桂波, 毕娟, 汪剑波, 陈新邑, 孙贯成, 卢俊 2011 60 094102Google Scholar

    Chen G B, Bi J, Wang J B, Chen X Y, Sun G C, Lu J 2011 Acta Phys. Sin. 60 094102Google Scholar

    [17]

    Zhdanov M S, Wan L, Gribenko A, Martin C, Key K, Constable S 2011 Geophysics 7 6

    [18]

    殷长春, 张博, 刘云鹤, 蔡晶 2015 地球 58 1411Google Scholar

    Yin C C, Zhang B, Liu Y H, Cai J 2015 Chinese J. Geophys. 58 1411Google Scholar

    [19]

    李先进, 雷霖, 陈涌频, 江明, 荣志, 胡俊 2019 电波科学学报 1 1

    Li X J, Lei L, Chen Y P, Jiang M, Rong Z, Hu J 2019 The Chinese J of Rad. Sci. 1 1

    [20]

    Li J H, Song L P, Liu Q H 2016 Pure Appl. Geophys. 173 607Google Scholar

    [21]

    Anderson W L 1979 Geophysics 44 1287Google Scholar

    [22]

    阮百尧, 王有学 2005 地球 48 1197Google Scholar

    Ruan B Y, Wang Y X 2005 Chinese J. Geophys. 48 1197Google Scholar

  • 图 1  积分方程模拟三维地井电磁场观测系统示意图(未显示地形)

    Fig. 1.  Sketch of 3D (three-dimensional) SBEM (surface to borehole electromagnetic) measurement system using IE (integral equation) without topography.

    图 2  区域划分示意图(剖面图)

    Fig. 2.  Sketch of domain decomposition in profile.

    图 3  观测系统及计算区域划分示意图 (a) 三维地井电磁; (b)参考空间介质; (c) 复杂地质构造背景介质; (d) 油气目标体

    Fig. 3.  Sketch of domain decomposition and observation system: (a) 3D SBEM; (b) reference model; (c) background model; (d) oil and gas model.

    图 4  均匀半空间模型三维积分方程法(3D IE)、三维边界积分法(3D BIE)、Anderson算法模拟结果对比图

    Fig. 4.  Magnetic field of reference model calculated by 3D IE, 3D BIE and Anderson code.

    图 5  三维山谷地形及地面电磁观测系统示意图, Tx为场源位置, Rx为接收点位置

    Fig. 5.  Sketch of 3D valley terrain with surface electromagnetic. Tx denotes transmitter and Rx is receiver.

    图 6  三维山谷地形三维积分方程模拟、三维边界积分模拟地面磁场分量归一化响应及其差值对比图

    Fig. 6.  Magnetic field of 3D valley terrain calculated by 3D IE and 3D BIE: (a), (b) Total magnetic field; (c), (d) difference of magnetic field between IE and BIE.

    图 7  均匀半空间地井电磁观测三维积分方程法、Anderson算法模拟电场响应对比

    Fig. 7.  Electric field of reference model calculated by 3D IE and Anderson code for 3D SBEM.

    图 8  三维山谷地形及多方位地井电磁观测示意图

    Fig. 8.  Sketch of 3D valley terrain with multi-azimuth SBEM.

    图 9  三维山谷地形三方位地井电磁场响应 (a) Tx1场源; (b) Tx2场源; (c) Tx3场源

    Fig. 9.  Electric field of 3D valley terrain with multi-azimuth SBEM: (a) Tx1; (b) Tx1; (c) Tx1.

    表 1  均匀半空间介质地电结构模型的不同算法的电磁场模拟效率对比

    Table 1.  Comparison of computational effectiveness of modeling electromagnetic field via different algorithms for a half homogeneous medium.

    模拟算法截断边界剖分方式网格剖分耗时/s
    Anderson不需要不需要0.1
    三维边界积分需要全局剖分50 × 50123.0
    区域积分不需要局部剖分20 × 20 × 2086.0
    矩量法不需要局部剖分20 × 20 × 20957.0
    下载: 导出CSV
    Baidu
  • [1]

    Augustin A, Kennedy W, Morrison H 1989 Geophysics 54 90Google Scholar

    [2]

    李静和, 何展翔, 吕玉增 2011 工程地球 8 303Google Scholar

    Li J H, He Z X, Lü Y Z 2011 Chin. J. Eng. Geophys. 8 303Google Scholar

    [3]

    Jahandari H, Ansari S, Farquharson C 2017 J. Appl. Geophys. 138 185Google Scholar

    [4]

    汤文武, 柳建新, 叶益信 2018 石油地球物理勘探 53 617

    Tang W W, Liu J X, Ye Y X 2018 Oil Geophys. Prosp. 53 617

    [5]

    Nornikman H, Pee N, Ahmad B 2018 JTEC 10 35

    [6]

    张烨, 林蔺, 陈桂波 2018 地球 61 1639Google Scholar

    Zhang Y, Lin L, Chen G B 2018 Chinese J. Geophys. 61 1639Google Scholar

    [7]

    魏宝君, 陈涛, 侯学理 2014 中国石油大学学报 38 57Google Scholar

    Wei B J, Chen T, Hou X L 2014 J. China Uni. Petrol. 38 57Google Scholar

    [8]

    郭成豹, 肖昌汉, 刘大明 2008 57 4182Google Scholar

    Guo C B, Xiao C H, Liu D M 2008 Acta Phys. Sin. 57 4182Google Scholar

    [9]

    陈桂波, 汪宏年, 姚敬金, 韩子夜 2009 58 3848Google Scholar

    Chen G B, Wang H N, Yao J J, Han Z Y 2009 Acta Phys. Sin. 58 3848Google Scholar

    [10]

    李静和, 何展翔 2012 石油地球物理勘探 47 653

    Li J H, He Z X 2012 Oil Geophys. Prosp. 47 653

    [11]

    Li J H, He Z X, Xu Y X 2017 Appl. Geophys. 14 559

    [12]

    Kruglyakov M, Kuvshinov A 2018 Geophys. J. Int. 213 1387Google Scholar

    [13]

    Tiberi G, Monorchio A, Manara G, Mittra R A 2006 IEEE T. Anteen. Propag. 54 2508Google Scholar

    [14]

    Nie X C, Yuan N, Liu C R 2010 IEEE Geosci. Remote. S. 48 72Google Scholar

    [15]

    Chobanyan E, Notaros B M, Ilic M M 2014 APSURSI 213 4

    [16]

    陈桂波, 毕娟, 汪剑波, 陈新邑, 孙贯成, 卢俊 2011 60 094102Google Scholar

    Chen G B, Bi J, Wang J B, Chen X Y, Sun G C, Lu J 2011 Acta Phys. Sin. 60 094102Google Scholar

    [17]

    Zhdanov M S, Wan L, Gribenko A, Martin C, Key K, Constable S 2011 Geophysics 7 6

    [18]

    殷长春, 张博, 刘云鹤, 蔡晶 2015 地球 58 1411Google Scholar

    Yin C C, Zhang B, Liu Y H, Cai J 2015 Chinese J. Geophys. 58 1411Google Scholar

    [19]

    李先进, 雷霖, 陈涌频, 江明, 荣志, 胡俊 2019 电波科学学报 1 1

    Li X J, Lei L, Chen Y P, Jiang M, Rong Z, Hu J 2019 The Chinese J of Rad. Sci. 1 1

    [20]

    Li J H, Song L P, Liu Q H 2016 Pure Appl. Geophys. 173 607Google Scholar

    [21]

    Anderson W L 1979 Geophysics 44 1287Google Scholar

    [22]

    阮百尧, 王有学 2005 地球 48 1197Google Scholar

    Ruan B Y, Wang Y X 2005 Chinese J. Geophys. 48 1197Google Scholar

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 王月洋, 尹俊豪, 严康, 林钦宁, 庞仁君, 王泽森, 杨涛, 印建平. 基于多能级速率方程的CaH分子三维磁光囚禁模型.  , 2022, 71(16): 163701. doi: 10.7498/aps.71.20220304
    [3] 袁倩, 周培阳, 何姿, 陈学文, 丁大志. 基于混合场积分方程的半空间上方金属目标电磁散射特性高效分析.  , 2022, 71(11): 114101. doi: 10.7498/aps.71.20212152
    [4] 陈博, 汪宏年, 杨守文, 殷长春. 海洋可控源三维电磁响应显式灵敏度矩阵的快速算法.  , 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [5] 唐富明, 刘凯, 杨溢, 屠倩, 王凤, 王哲, 廖青. 基于图形处理器加速数值求解三维含时薛定谔方程.  , 2020, 69(23): 234202. doi: 10.7498/aps.69.20200700
    [6] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响.  , 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [7] 秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于. 三维绝热简正波-抛物方程理论及应用.  , 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [8] 王浩森, 杨守文, 白彦, 陈涛, 汪宏年. 非均质各向异性地层中方位随钻电磁测井响应三维有限体积法数值模拟算法.  , 2016, 65(7): 079101. doi: 10.7498/aps.65.079101
    [9] 周建美, 张烨, 汪宏年, 杨守文, 殷长春. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应.  , 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [10] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究.  , 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [11] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究.  , 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [12] 陈桂波, 毕娟, 张烨, 李宗文. 各向异性介质三维电磁响应模拟的Ho-GEBA算法.  , 2013, 62(9): 094101. doi: 10.7498/aps.62.094101
    [13] 王浩, 刘国权, 栾军华. 凸形晶粒的各向异性三维von Neumann方程研究.  , 2012, 61(4): 048102. doi: 10.7498/aps.61.048102
    [14] 程雪苹, 林机, 韩平. 三维非线性Schr?dinger方程的直接微扰方法.  , 2010, 59(10): 6752-6756. doi: 10.7498/aps.59.6752
    [15] 曾思良, 邹士阳, 王建国, 颜君. 数值求解三维含时Schr?dinger方程及其应用.  , 2009, 58(12): 8180-8187. doi: 10.7498/aps.58.8180
    [16] 廖臣, 刘大刚, 刘盛纲. 三维电磁粒子模拟并行计算的研究.  , 2009, 58(10): 6709-6718. doi: 10.7498/aps.58.6709
    [17] 陈桂波, 汪宏年, 姚敬金, 韩子夜. 各向异性海底地层海洋可控源电磁响应三维积分方程法数值模拟.  , 2009, 58(6): 3848-3857. doi: 10.7498/aps.58.3848
    [18] 何 光, 梅凤翔. 三质点Toda晶格微分方程的积分.  , 2008, 57(1): 18-20. doi: 10.7498/aps.57.18
    [19] 蔡长英, 任中洲, 鞠国兴. 指数型变化有效质量的三维Schr?dinger方程的解析解.  , 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [20] 周光辉, 文根旺. 无反射势的Schr?dinger方程严格解的三维推广.  , 1993, 42(3): 345-350. doi: 10.7498/aps.42.345
计量
  • 文章访问数:  6334
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-08
  • 修回日期:  2019-04-12
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map