搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaZnO薄膜晶体管背板的栅极驱动电路静电释放失效研究

马群刚 周刘飞 喻玥 马国永 张盛东

引用本文:
Citation:

InGaZnO薄膜晶体管背板的栅极驱动电路静电释放失效研究

马群刚, 周刘飞, 喻玥, 马国永, 张盛东

Electro-static discharge failure analysis and design optimization of gate-driver on array circuit in InGaZnO thin film transistor backplane

Ma Qun-Gang, Zhou Liu-Fei, Yu Yue, Ma Guo-Yong, Zhang Sheng-Dong
PDF
HTML
导出引用
  • 本文通过解析阵列基板栅极驱动(gate driver on array, GOA)电路中发生静电释放(electro-static discharge, ESD)的InGaZnO薄膜晶体管(InGaZnO thin-film transistor, IGZO TFT)器件发现:栅极Cu金属扩散进入了SiNx/SiO2栅极绝缘层; 源漏极金属层成膜前就发生了ESD破坏; 距离ESD破坏区域越近的IGZO TFT, 电流开关比越小, 直到源漏极与栅极完全短路. 本文综合IGZO TFT器件工艺、GOA区与显示区金属密度比、栅极金属层与绝缘层厚度非均匀性分布等因素, 采用ESD器件级分析与系统级分析相结合的方法, 提出栅极Cu:SiNx/SiO2界面缺陷以及这三层薄膜的厚度非均匀分布是导致GOA电路中沟道宽长比大的IGZO TFT发生ESD失效的关键因素, 并针对性地提出了改善方案.
    There is a risk of InGaZnO thin film transistor (IGZO TFT) failure, especially electro-static discharge (ESD) damage of gate driver on array (GOA) circuits, due to the combination of Cu interconnect, InGaZnO (IGZO) active layer and SiNx/SiO2 insulating layer used to realize large-scale ultra-high resolution display. It is found that the IGZO TFT damage position caused by ESD occurs between the source/drain metal layer and the gate insulator. The Cu metal of gate electrode diffuses into the gate insulator of SiNx/SiO2. The closer to the ESD damage area the IGZO TFT is, the more serious the negative bias of its threshold voltage (Vth) is until the device is fully turned on. The IGZO TFT with a large channel width-to-length ratio(W/L) in GOA circuit results in a serious negative bias of threshold voltage. In this paper, the ESD failure problem of GOA circuit in the IGZO TFT backplane is systematically analyzed by combining the ESD device level analysis with the system level analysis, which combines IGZO TFT device technology, difference in metal density between GOA region and active area on backplane, non-uniform thickness distribution of gate metal layer and gate insulator and so on. In the analysis of ESD device level, we propose that the diffusion of Cu metal from gate electrode into SiNx/SiO2 leads to the decrease of effective gate insulator layer, and that the built-in space charge effect leads to the decrease of the anti-ESD damage ability of IGZO TFT. In the analysis of ESD system level, we propose that the density of metal layers in GOA region is 4.5 times higher than that in active area of display panel, which makes the flatness of metal layer in GOA region worse. The non-uniformity of thickness of Cu metal film, SiNx film and SiO2 film around glass substrate lead to the position dependence of the anti-ESD damage ability of IGZO TFT in the GOA region. If there is a transition zone of film thickness change in IGZO TFT with large area, the ESD failure will occur easily. Accordingly, we propose to split large area IGZO TFT into several sub-TFT structures, which can effectively improve the ESD failure.
      通信作者: 张盛东, zhangsd@pku.edu.cn
      Corresponding author: Zhang Sheng-Dong, zhangsd@pku.edu.cn
    [1]

    Marko S, Geert H, Chen S H, Kris M, Dimitri L 2018 Electrical Overstress/electrostatic Discharge Symposium Reno, September 23-28, 2018 p1

    [2]

    Liu Y, Chen R, Li B, En Y F, Chen Y Q 2017 IEEE Trans. Electron Dev. 1-5 99

    [3]

    Tai Y H, Chiu H L, Chou L S 2013 J. Disp. Technol. 9 613Google Scholar

    [4]

    Scholz M, Steudel S, Myny K, Chen S, Boschke R, Hellings G, Linten D 2016 Electrical Overstress/electrostatic Discharge Symposium Garden Grove, September 11-16, 2016 pp1-7.

    [5]

    宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪 2015 64 126103Google Scholar

    Ning H L, Hu S B, Zhu F, Yao R H, Xu M, Zou J H, Tao H, Xu R X, Xu H, Wang L, Lan L F, Peng J B 2015 Acta Phys. Sin. 64 126103Google Scholar

    [6]

    Kim L Y, Kwon O K 2018 IEEE Electr. Device Lett. 39 43Google Scholar

    [7]

    Lin C L, Wu C E, Chen F H, Lai P C, Cheng M H 2016 IEEE Trans. Electron Dev. 63 2405Google Scholar

    [8]

    Geng D, Chen Y F, Mativenga M, Jin J 2015 IEEE Electr. Device Lett. 36 805Google Scholar

    [9]

    Chen W, Barnaby H J, Kozicki M N 2016 IEEE Electr. Device Lett. 37 580Google Scholar

    [10]

    Choi Z S, Mönig R, Thompson C V 2007 J. Appl. Phys. 102 387

    [11]

    Lee K W, Wang H, Bea J C, Murugesan M 2014 IEEE Electr. Device Lett. 35 114Google Scholar

    [12]

    Xiang L, Wang L L, Ning C, Hu H, Wei Y, Wang K, Yoo S Y, Zhang S D 2014 IEEE Trans. Electron Dev. 61 4299Google Scholar

    [13]

    Han K L, Ok K C, Cho H S, Oh S, Park J S 2017 Appl. Phys. Lett. 111 063502Google Scholar

    [14]

    Tari A, Lee C H, Wong W S 2015 Appl. Phys. Lett. 107 1679

    [15]

    Hung S C, Chiang C H, Li Y M 2015 J. Display Tech. 11 640Google Scholar

    [16]

    Hu C K, Gignac L M, Lian G 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, December 1-5, 2018

    [17]

    Thermadam S P, Bhagat S K, Alford T L, Sakaguchi Y, Kozicki M N, Mitkova M 2010 Thin Solid Films 518 3293Google Scholar

    [18]

    Toumi S, Ouennoughi Z, Strenger K C 2016 Solid State Electron. 122 56Google Scholar

    [19]

    Christen T 2017 IEEE T. Dielect. E. I. 23 3712

    [20]

    Choi S, Jang J, Kang H, Baeck J H, Bae J U, Park K S, Yoon S Y, Kang I B, Kim D M, Choi S J, Kim Y S, Oh S, Kim D H 2017 IEEE Electr. Device Lett. 38 580Google Scholar

    [21]

    Jang J, Kim D G, Kim D M, Choi S J, Kim D H 2014 Appl. Phys. Lett. 105 1117

    [22]

    强蕾, 姚若河 2012 61 087303Google Scholar

    Qiang L, Yao R H 2012 Acta Phys. Sin. 61 087303Google Scholar

    [23]

    邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡 2019 68 057302

    Deng X Q, Deng L W, He Y N, Liao C W, Huang S X, Luo H 2019 Acta Phys. Sin. 68 057302

    [24]

    Wang W, Xu G W, Chowdhury M D H, Wang H, Um J K, Ji Z Y, Gao N, Zong Z W, Bi C, Lu C Y, Lu N D, Banerjee W, Feng J F, Li L, Kadashchuk A, Jang J, Liu M 2018 Phys. Rev. B 98 245

  • 图 1  13T1C架构的GOA电路单元原理图

    Fig. 1.  Diagram of the GOA circuit unit composed of 13 TFTs and 1 capacitor.

    图 2  GOA电路的ESD破坏现象 (a) GOA区大面积的ESD烧伤现象; (b) M2 TFT的ESD破坏现象

    Fig. 2.  ESD damage phenomenon of GOA circuit: (a) Photo image of the overall GOA where ESD damage occurs. (b) photo image of ESD damage M2 TFT in the GOA unit.

    图 3  M2 TFT的ESD失效区域解析 (a) ESD失效位置的FIB断面解析; (b) ESD失效位置的栅极绝缘层元素分析

    Fig. 3.  Analysis of ESD failure area of M2 TFT: (a) FIB section analysis of ESD failure position; (b) elemental analysis of gate insulator at failure position of ESD.

    图 4  距离ESD失效中心不同位置的M2 TFT特性

    Fig. 4.  M2 TFT characteristics at different positions from ESD failure center.

    图 5  Cu扩散引起的空间电荷效应与ESD失效机理

    Fig. 5.  Mechanism of space charge effect formed by Cu2+ ion entering SiO2.

    图 6  Cu:SiNx/SiO2三层薄膜的厚度等值线分布

    Fig. 6.  Thickness contour distribution of Cu: SiNx/SiO2 three films.

    表 1  GOA区M2 TFT不同设计方案比较

    Table 1.  Comparison of different design schemes of M2 TFT in GOA.

    结构 2个子TFT 6个子TFT 8个子TFT
    版图
    版图空间 274.5 μm × 259.2 μm 274.5 μm × 300.2 μm 274.5 μm × 351.2 μm
    扫描线面积 53158.8 59647.3 65519.6
    数据线面积 43155.8 46190.2 49248.2
    扫描线密度 74.71% 72.4% 68%
    数据线密度 60.7% 56.1% 51.1%
    下载: 导出CSV
    Baidu
  • [1]

    Marko S, Geert H, Chen S H, Kris M, Dimitri L 2018 Electrical Overstress/electrostatic Discharge Symposium Reno, September 23-28, 2018 p1

    [2]

    Liu Y, Chen R, Li B, En Y F, Chen Y Q 2017 IEEE Trans. Electron Dev. 1-5 99

    [3]

    Tai Y H, Chiu H L, Chou L S 2013 J. Disp. Technol. 9 613Google Scholar

    [4]

    Scholz M, Steudel S, Myny K, Chen S, Boschke R, Hellings G, Linten D 2016 Electrical Overstress/electrostatic Discharge Symposium Garden Grove, September 11-16, 2016 pp1-7.

    [5]

    宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪 2015 64 126103Google Scholar

    Ning H L, Hu S B, Zhu F, Yao R H, Xu M, Zou J H, Tao H, Xu R X, Xu H, Wang L, Lan L F, Peng J B 2015 Acta Phys. Sin. 64 126103Google Scholar

    [6]

    Kim L Y, Kwon O K 2018 IEEE Electr. Device Lett. 39 43Google Scholar

    [7]

    Lin C L, Wu C E, Chen F H, Lai P C, Cheng M H 2016 IEEE Trans. Electron Dev. 63 2405Google Scholar

    [8]

    Geng D, Chen Y F, Mativenga M, Jin J 2015 IEEE Electr. Device Lett. 36 805Google Scholar

    [9]

    Chen W, Barnaby H J, Kozicki M N 2016 IEEE Electr. Device Lett. 37 580Google Scholar

    [10]

    Choi Z S, Mönig R, Thompson C V 2007 J. Appl. Phys. 102 387

    [11]

    Lee K W, Wang H, Bea J C, Murugesan M 2014 IEEE Electr. Device Lett. 35 114Google Scholar

    [12]

    Xiang L, Wang L L, Ning C, Hu H, Wei Y, Wang K, Yoo S Y, Zhang S D 2014 IEEE Trans. Electron Dev. 61 4299Google Scholar

    [13]

    Han K L, Ok K C, Cho H S, Oh S, Park J S 2017 Appl. Phys. Lett. 111 063502Google Scholar

    [14]

    Tari A, Lee C H, Wong W S 2015 Appl. Phys. Lett. 107 1679

    [15]

    Hung S C, Chiang C H, Li Y M 2015 J. Display Tech. 11 640Google Scholar

    [16]

    Hu C K, Gignac L M, Lian G 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, December 1-5, 2018

    [17]

    Thermadam S P, Bhagat S K, Alford T L, Sakaguchi Y, Kozicki M N, Mitkova M 2010 Thin Solid Films 518 3293Google Scholar

    [18]

    Toumi S, Ouennoughi Z, Strenger K C 2016 Solid State Electron. 122 56Google Scholar

    [19]

    Christen T 2017 IEEE T. Dielect. E. I. 23 3712

    [20]

    Choi S, Jang J, Kang H, Baeck J H, Bae J U, Park K S, Yoon S Y, Kang I B, Kim D M, Choi S J, Kim Y S, Oh S, Kim D H 2017 IEEE Electr. Device Lett. 38 580Google Scholar

    [21]

    Jang J, Kim D G, Kim D M, Choi S J, Kim D H 2014 Appl. Phys. Lett. 105 1117

    [22]

    强蕾, 姚若河 2012 61 087303Google Scholar

    Qiang L, Yao R H 2012 Acta Phys. Sin. 61 087303Google Scholar

    [23]

    邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡 2019 68 057302

    Deng X Q, Deng L W, He Y N, Liao C W, Huang S X, Luo H 2019 Acta Phys. Sin. 68 057302

    [24]

    Wang W, Xu G W, Chowdhury M D H, Wang H, Um J K, Ji Z Y, Gao N, Zong Z W, Bi C, Lu C Y, Lu N D, Banerjee W, Feng J F, Li L, Kadashchuk A, Jang J, Liu M 2018 Phys. Rev. B 98 245

  • [1] 王琛, 温盼, 彭聪, 徐萌, 陈龙龙, 李喜峰, 张建华. 钝化层对背沟道刻蚀型IGZO薄膜晶体管的影响.  , 2023, 72(8): 087302. doi: 10.7498/aps.72.20222272
    [2] 刘静, 党跃栋, 刘慧婷, 赵岩. 内嵌横向PNP晶体管的新型静电放电双向防护器件.  , 2022, 71(23): 238501. doi: 10.7498/aps.71.20220824
    [3] 邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡. InGaZnO薄膜晶体管泄漏电流模型.  , 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [4] 马群刚, 王海宏, 张盛东, 陈旭, 王婷婷. InGaZnO薄膜晶体管背板的层间Cu互连静电保护研究.  , 2019, 68(15): 158501. doi: 10.7498/aps.68.20190646
    [5] 覃婷, 黄生祥, 廖聪维, 于天宝, 邓联文. 同步对称双栅InGaZnO薄膜晶体管电势模型研究.  , 2017, 66(9): 097101. doi: 10.7498/aps.66.097101
    [6] 张世玉, 喻志农, 程锦, 吴德龙, 栗旭阳, 薛唯. 退火温度和Ga含量对溶液法制备InGaZnO薄膜晶体管性能的影响.  , 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [7] 张立荣, 马雪雪, 王春阜, 李冠明, 夏兴衡, 罗东向, 吴为敬, 徐苗, 王磊, 彭俊彪. 基于金属氧化物薄膜晶体管的高速行集成驱动电路.  , 2016, 65(2): 028501. doi: 10.7498/aps.65.028501
    [8] 聂国政, 邹代峰, 钟春良, 许英. 内嵌CuO薄膜对并五苯薄膜晶体管性能的改善.  , 2015, 64(22): 228502. doi: 10.7498/aps.64.228502
    [9] 徐飘荣, 强蕾, 姚若河. 一个非晶InGaZnO薄膜晶体管线性区陷阱态的提取方法.  , 2015, 64(13): 137101. doi: 10.7498/aps.64.137101
    [10] 王源, 张立忠, 曹健, 陆光易, 贾嵩, 张兴. 隧道场效应晶体管静电放电冲击特性研究.  , 2014, 63(17): 178501. doi: 10.7498/aps.63.178501
    [11] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布.  , 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [12] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究.  , 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [13] 徐天宁, 吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健. In2O3 透明薄膜晶体管的制备及其电学性能的研究.  , 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
    [14] 孙钦军, 徐征, 赵谡玲, 张福俊, 高利岩, 田雪雁, 王永生. 有机薄膜晶体管中接触效应的研究.  , 2010, 59(11): 8125-8130. doi: 10.7498/aps.59.8125
    [15] 刘玉荣, 陈伟, 廖荣. 低工作电压聚噻吩薄膜晶体管.  , 2010, 59(11): 8088-8092. doi: 10.7498/aps.59.8088
    [16] 邹建华, 兰林锋, 徐瑞霞, 杨伟, 彭俊彪. 有机薄膜晶体管驱动聚合物发光二极管研究.  , 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [17] 刘玉荣, 王智欣, 虞佳乐, 徐海红. 高迁移率聚合物薄膜晶体管.  , 2009, 58(12): 8566-8570. doi: 10.7498/aps.58.8566
    [18] 袁广才, 徐征, 赵谡玲, 张福俊, 许娜, 孙钦军, 徐叙瑢. 低栅极电压控制下带有phenyltrimethoxysilane单分子自组装层的有机薄膜晶体管场效应特性研究.  , 2009, 58(7): 4941-4947. doi: 10.7498/aps.58.4941
    [19] 吴振宇, 柴常春, 李跃进, 刘静, 汪家友, 杨银堂. Cu互连应力迁移温度特性研究.  , 2009, 58(4): 2625-2630. doi: 10.7498/aps.58.2625
    [20] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究.  , 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
计量
  • 文章访问数:  9549
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-03-11
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map