-
Polymorphic phase transformation and melting under shock wave loading are important for studying the material dynamic mechanical behavior and equation of state in condensed matter physics. In this paper, the accurate Hugoniot parameter and sound velocity of shocked pure bismuth (Bi) in a pressure range of 17.3-28.3 GPa are obtained by using flyer impact method and rarefaction overtaking technique, respectively, and the sound velocity softening trend in shock-induced melting zone and the melting kinetics of Bi are then analyzed. In each experiment, six Bi samples with different thickness values are affected by oxygen-free-high-conducticity copper flyer fired through power gun. Shock wave velocity and particle velocity in Bi are experimentally determined through measuring the impact velocity and shock wave time in the thickest sample by photon Doppler velocimetry (PDV) technique. The velocity profiles on each interface between Bi and lithium fluoride (LiF) window are measured by displacement interferometer system of any reflector (DISAR), and then the sound velocity of shocked Bi is determined using the rarefaction overtaking method. The analyses of our results show that the softening of sound velocity of Bi approximatively satisfies the linear relation of Cs=3.682-0.015 p in the solid-liquid coexistence zone, and the pressure zone of the solid-liquid coexistence phase is further affirmed to be in a range of 18-27.4 GPa. Additionally, the obtained Hugoniot data for Bi in this paper supply a gap in the pressure zone of solid-liquid mixing phase. The quadratic equation with the expression of Ds=0.401+ 3.879 up-0.876 up2 can better demonstrate the relation between shock wave velocity and particle velocity than a linear one when the particle velocity lies in a range of 0.5-1.0 km/s, and this non-linear property maybe has a relationship with the shock-induced melting of Bi. Finally, our wave profile measurement of the Bi/LiF interface shows peculiar ramp characteristics in the expected velocity plateau zone in the pressure zone of solid-liquid coexistence phase, which may be associated with both the nonhomogeneous melting kinetics and the long time scale of melting for bismuth.
-
Keywords:
- sound velocity /
- shock-induced melt /
- wave profile /
- Bismuth
[1] Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291
[2] Larson D B 1967 J. Appl. Phys. 38 1541
[3] Romain J P 1974 J. Appl. Phys. 45 135
[4] Asay J R 1977 J. Appl. Phys. 48 2832
[5] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701
[6] Colvin J D, Reed B W, Jankowski A F, Kumar M, Paisley D L, Swift D C, Tierney T E, Frank A M 2007 J. Appl. Phys. 101 084906
[7] Gorman M G, Briggs R, McBrid E E, Higginbotham A, Arnold B, Eggert J H, Fratanduono D E, Galtier E, Lazicki A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701
[8] Jensen B J, Cherne F J, Cooley J C, Zhernokletov M V, Kovalev A E 2010 Phys. Rev. B 81 214109
[9] Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Wu Q, Tan H 2014 Appl. Phys. Lett. 105 201910
[10] Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520
[11] Song P, Cai L C, Tao T J, Yuan S, Chen H, Huang J, Zhao X W, Wang X J 2016 J. Appl. Phys. 120 195101
[12] Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese)[谭叶, 俞宇颖, 戴诚达, 谭华, 王青松, 王翔 2011 60 106401]
[13] Tan Y, Yu Y Y, Dai C D, Jin K, Wang Q S, Hu J B, Tan H 2013 J. Appl. Phys. 113 093509
[14] Weng J D, Tan H, Hu S L, Ma Y, Wang X 2005 Sci. Instrum Rev. 76 093301
[15] Jin F Q 1999 Introduction to Experimental Equation of State (2th Ed.) (Beijing:Science Press) p200 (in Chinese)[经福谦 1999 实验物态方程导引(第二版) (北京:科学出版社) 第200页]
[16] Jensen B J, Holtkamp D B, Rigg P A, Dolan D H 2007 J. Appl. Phys. 101 013523
[17] Mitchell A C, Nellis W J 1981 J. Appl. Phys. 52 3363
[18] Marsh S P 1981 LASL Shock Hugoniot Data (California:University of California Press) p23
[19] Wetta N, Pelissier J L 2001 Physica A 289 479
[20] Hayes D B 1975 J. Appl. Phys. 46 3438
-
[1] Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291
[2] Larson D B 1967 J. Appl. Phys. 38 1541
[3] Romain J P 1974 J. Appl. Phys. 45 135
[4] Asay J R 1977 J. Appl. Phys. 48 2832
[5] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701
[6] Colvin J D, Reed B W, Jankowski A F, Kumar M, Paisley D L, Swift D C, Tierney T E, Frank A M 2007 J. Appl. Phys. 101 084906
[7] Gorman M G, Briggs R, McBrid E E, Higginbotham A, Arnold B, Eggert J H, Fratanduono D E, Galtier E, Lazicki A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701
[8] Jensen B J, Cherne F J, Cooley J C, Zhernokletov M V, Kovalev A E 2010 Phys. Rev. B 81 214109
[9] Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Wu Q, Tan H 2014 Appl. Phys. Lett. 105 201910
[10] Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520
[11] Song P, Cai L C, Tao T J, Yuan S, Chen H, Huang J, Zhao X W, Wang X J 2016 J. Appl. Phys. 120 195101
[12] Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese)[谭叶, 俞宇颖, 戴诚达, 谭华, 王青松, 王翔 2011 60 106401]
[13] Tan Y, Yu Y Y, Dai C D, Jin K, Wang Q S, Hu J B, Tan H 2013 J. Appl. Phys. 113 093509
[14] Weng J D, Tan H, Hu S L, Ma Y, Wang X 2005 Sci. Instrum Rev. 76 093301
[15] Jin F Q 1999 Introduction to Experimental Equation of State (2th Ed.) (Beijing:Science Press) p200 (in Chinese)[经福谦 1999 实验物态方程导引(第二版) (北京:科学出版社) 第200页]
[16] Jensen B J, Holtkamp D B, Rigg P A, Dolan D H 2007 J. Appl. Phys. 101 013523
[17] Mitchell A C, Nellis W J 1981 J. Appl. Phys. 52 3363
[18] Marsh S P 1981 LASL Shock Hugoniot Data (California:University of California Press) p23
[19] Wetta N, Pelissier J L 2001 Physica A 289 479
[20] Hayes D B 1975 J. Appl. Phys. 46 3438
计量
- 文章访问数: 6163
- PDF下载量: 111
- 被引次数: 0