搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低孔隙度疏松铝的高压声速与冲击熔化

宋萍 王青松 戴诚达 蔡灵仓 张毅 翁继东

引用本文:
Citation:

低孔隙度疏松铝的高压声速与冲击熔化

宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东

Sound velocity and shock melting of low porosity aluminum

Song Ping, Wang Qing-Song, Dai Cheng-Da, Cai Ling-Cang, Zhang Yi, Weng Ji-Dong
PDF
导出引用
  • 对含微孔洞疏松度m=1.04的疏松铝进行了冲击加载-卸载实验,利用DISAR(distance interferometer system for any reflector)测得了53至99 GPa五个冲击压力下疏松铝/LiF界面粒子速度波剖面,获得了各压力下的纵波声速和其中三个压力点的体波声速,确定出疏松铝的冲击熔化压力约为81 GPa,确定出高压下冲击熔化前的泊松比约为0.372.通过分析,微孔洞明显降低了冲击熔化压力,引起的非谐振效应明显,状态方程计算中考虑非谐效应,非谐因子l
    Shock loading-release is performed on the porous aluminum with micropore and porosity m=1.04. Time-resolved interfacial velocity between the porous aluminum and LiF window is measured with diatance interferometer system for any reflector (DISAR) under five pressures ranging from 53 GPa to 99 GPa . From the interfacial velocity, the Euler longitudinal sound velocities under five pressures and the bulk sound velocities under 53 GPa, 72 GPa and 91 GPa are obtained. The melting pressure of the material is about 81 GPa. The poisson ratio before shock melting is about 0.37. From the analysis, the existence of the micropore in the material reduces the the shock melting obviously. So, its induced anharmonic effect cannot be neglected. Considering anharmonic effect into the equation of state, the anharmonic parameter is calculated to be about 30.
    [1]

    Erhart P, Bringa E M, Kumar M 2005 Phys. Rev. B 72 052104

    [2]

    Burakovsky L, Preston D L, Silbar R R 1999 Phys. Rev. B 61 15011

    [3]

    Burakovsky L, Preston D L, Silbar R R 2000 J. App. Phys. B 88 6294

    [4]

    Gomez L, Dobry A, Diep H T 2001 Phys. Rev. B 63 224103

    [5]

    Lutsko J F, Wolf D, Phillpot S R 1989 Phys. Rev. B 40 2841

    [6]

    Agrawal P M 2003 J. Chem. Phys. 118 9680

    [7]

    Kubota A, Reisman D B, Wolfer W G 2006 Appl. Phys. Lett. 88 241924

    [8]

    Tang W H, Zhang R Q 1999 Equation of state theory and calculation conspectus (Hunan:National University of Defense Technology Press) p517 (in Chinese) [汤文辉、张若棋 1999 物态方程理论及计算概论(湖南:国防科技大学出版社)]

    [9]

    Royce E B 1971 GRAY, A Three-phase Equation of State for Metals. UCRL-51121

    [10]

    Xu X S, Zhang W X 1986 Introduction to practical equation of state theory (Beijing:Science Press) p517 (in Chinese) [徐锡申、张万箱 1986 实用物态方程理论导引(北京:科学出版社)]

    [11]

    Jeong J W, Lee I H, Chang K J 1999 Phys. Rev. B 59 329

    [12]

    Jing F Q 1999 Introduction to experimental equation of state (Beijing:Science Press) p191 (in Chinese) [经福谦 1999 实验物态方程导引(北京:科学出版社)第191页]

    [13]

    Asay J R, Chhabildas L C High pressure strength of shocked aluminum. SAND-85-0157C

    [14]

    Song P, Zhou X M, Unpublished. (in Chinese) [宋 萍、周显明 数据尚未发表]

    [15]

    McQueen R G, Fritz J N and Morris C E 1983 in Shock Waves in Condensed Matter p95

    [16]

    Stanley P M 1980 LASL Shock Hugoniot Data (Univercity of California Press) p166

    [17]

    Song P, Cai L C 2009 Acta Phys. Sin. 58 1879 (in Chinese) [宋 萍、蔡灵仓 2009 58 1897]

  • [1]

    Erhart P, Bringa E M, Kumar M 2005 Phys. Rev. B 72 052104

    [2]

    Burakovsky L, Preston D L, Silbar R R 1999 Phys. Rev. B 61 15011

    [3]

    Burakovsky L, Preston D L, Silbar R R 2000 J. App. Phys. B 88 6294

    [4]

    Gomez L, Dobry A, Diep H T 2001 Phys. Rev. B 63 224103

    [5]

    Lutsko J F, Wolf D, Phillpot S R 1989 Phys. Rev. B 40 2841

    [6]

    Agrawal P M 2003 J. Chem. Phys. 118 9680

    [7]

    Kubota A, Reisman D B, Wolfer W G 2006 Appl. Phys. Lett. 88 241924

    [8]

    Tang W H, Zhang R Q 1999 Equation of state theory and calculation conspectus (Hunan:National University of Defense Technology Press) p517 (in Chinese) [汤文辉、张若棋 1999 物态方程理论及计算概论(湖南:国防科技大学出版社)]

    [9]

    Royce E B 1971 GRAY, A Three-phase Equation of State for Metals. UCRL-51121

    [10]

    Xu X S, Zhang W X 1986 Introduction to practical equation of state theory (Beijing:Science Press) p517 (in Chinese) [徐锡申、张万箱 1986 实用物态方程理论导引(北京:科学出版社)]

    [11]

    Jeong J W, Lee I H, Chang K J 1999 Phys. Rev. B 59 329

    [12]

    Jing F Q 1999 Introduction to experimental equation of state (Beijing:Science Press) p191 (in Chinese) [经福谦 1999 实验物态方程导引(北京:科学出版社)第191页]

    [13]

    Asay J R, Chhabildas L C High pressure strength of shocked aluminum. SAND-85-0157C

    [14]

    Song P, Zhou X M, Unpublished. (in Chinese) [宋 萍、周显明 数据尚未发表]

    [15]

    McQueen R G, Fritz J N and Morris C E 1983 in Shock Waves in Condensed Matter p95

    [16]

    Stanley P M 1980 LASL Shock Hugoniot Data (Univercity of California Press) p166

    [17]

    Song P, Cai L C 2009 Acta Phys. Sin. 58 1879 (in Chinese) [宋 萍、蔡灵仓 2009 58 1897]

  • [1] 张凤国, 刘军, 何安民, 赵福祺, 王裴. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用.  , 2022, 71(24): 244601. doi: 10.7498/aps.71.20221340
    [2] 华颖鑫, 陈小辉, 李俊, 郝龙, 孙毅, 王玉峰, 耿华运. 钒的冲击熔化原位X射线衍射测量研究.  , 2022, 71(7): 076201. doi: 10.7498/aps.71.20212065
    [3] 李雪梅, 俞宇颖, 谭叶, 胡昌明, 张祖根, 蓝强, 傅秋卫, 景海华. Bi在固液混合相区的冲击参数测量及声速软化特性.  , 2018, 67(4): 046401. doi: 10.7498/aps.67.20172166
    [4] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究.  , 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [5] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究.  , 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [6] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应.  , 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [7] 潘昊, 吴子辉, 胡晓棉. 非对称冲击-卸载实验中纵波声速的特征线分析方法.  , 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [8] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究.  , 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [9] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变.  , 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [10] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量.  , 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [11] 王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播.  , 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [12] 邵建立, 王裴, 何安民, 秦承森. 冲击诱导金属铝表面微射流现象的微观模拟.  , 2012, 61(18): 184701. doi: 10.7498/aps.61.184701
    [13] 郑鹤鹏, 蒋亦民, 彭政, 符力平. 颗粒固体弹性势能的声波性质.  , 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [14] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测.  , 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [15] 王新峰, 熊显潮, 高敏忠. 超声波流量计测量流体声速的实验方法.  , 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [16] 俞宇颖, 谭 华, 胡建波, 戴诚达, 陈大年, 王焕然. 冲击波作用下铝的等效剪切模量.  , 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [17] 朱 明, 王 殊, 王菽韬, 夏东海. 基于混合气体分子复合弛豫模型的一氧化碳浓度检测算法.  , 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [18] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性.  , 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [19] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速.  , 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [20] 胡建波, 俞宇颖, 戴诚达, 谭 华. 冲击加载下铝的剪切模量.  , 2005, 54(12): 5750-5754. doi: 10.7498/aps.54.5750
计量
  • 文章访问数:  9172
  • PDF下载量:  1009
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-06
  • 修回日期:  2010-07-14
  • 刊出日期:  2011-02-05

/

返回文章
返回
Baidu
map