搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

印度洋中北部声速剖面结构的时空变化及其物理机理研究

李佳 杨坤德 雷波 何正耀

引用本文:
Citation:

印度洋中北部声速剖面结构的时空变化及其物理机理研究

李佳, 杨坤德, 雷波, 何正耀

Research on the temporal-spatial distributions and the physical mechanisms for the sound speed profiles in north-central Indian Ocean

Li Jia, Yang Kun-De, Lei Bo, He Zheng-Yao
PDF
导出引用
  • 海洋的声速结构对水下声传播有重要影响,在印度洋中北部复杂多变的海洋物理和水文环境中, 获取声速剖面的时空统计分布规律对水下目标探测和水下声通信有重要意义. 由于垂直梯度法在声速结构分析中的局限性及其在印度洋中北部海域的适用性问题, 采用多元统计分析中的最优分割法对声速跃层进行分析,并应用最近10年的地转海洋学实时观测阵 数据对印度洋中北部海域声速剖面的特征量进行了计算,获得了声速跃层的垂直结构特征和时空变化规律; 还利用经验正交函数(EOF)表示方法,分析了印度洋中北部声速剖面拟合精度随EOF阶次的分布特点. 根据印度洋的海洋物理特征,揭示了声速剖面特征量时空演变的内在物理机理.研究结果表明: 最优分割法是适合印度洋声速结构的跃层判断方法,并提出了相应的判断准则参数; 声速剖面拟合精度随EOF阶次变化的区域性分布特征较明显,其季节性变化较小; 印度洋中北部的深海声道轴只在5S以南明显存在,在15S25S 附近海域存在三个跃层;印度洋中北部声速剖面结构可分为单跃层、双跃层Ⅰ型、双跃层Ⅱ型和三跃层四种类型以及春夏秋冬四个季节模态. 声速剖面的分析结果对于水声传播和声纳系统的使用具有一定参考意义.
    The structure of sound speed in ocean has a strong influence on underwater sound propagation. For underwater target detection and underwater acoustic communication, it is of great significance to obtain the temporal and spatial distribution of sound speed profile. Since the limitations and applicability of vertical grads method in structural analysis of sound speed in the Indian Ocean, optimal partition method is developed to calculate the sound spring layer. The study focuses on analysing the eigenvalues of sound speed profiles (SSPs) in the north-central Indian Ocean based on the last 10 year data of array for real-time geostrophic oceanography. The vertical structure characteristics of sound speed are investigated in the Indian Ocean, and the laws of temporal and spatial variation are obtained. The distribution of the fitting accuracy with the order of empirical orthogonal functions (EOF) are found. The physical mechanisms of the temporal and spatial variation of SSPs are revealed with the marine physical environment in Indian Ocean. The simulation results show that optimal partition method is suitable for the area to judge the structure of spring layer, and the parameters of the corresponding criterion is also proposed. The regional distributions of the fitting accuracy with the order of EOF are more obvious than with the seasonal variations. The deep channel axis exists at south 5S and there are three spring layers between 15S and 25S. The structures of SSPs in the Indian Ocean can be classified into four types: single spring layer, double spring layer type Ⅰ, double spring layer type Ⅱ and three spring layer, and for seasonal models: spring model, summer model, autumn model and winter model. The analysis results of the SSPs can provide some reference value for acoustic propagation and the sonar systems.
    • 基金项目: 国家自然科学基金(批准号: 11174235, 61101192)、 教育部新世纪优秀人才支持计划(批准号: NCET-08-0455)、 陕西省科学技术发展计划(批准号: 2010KJXX-02)和西北工业大学科技创新基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174235, 61101192), the Program for the New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-08-0455), the Science and Technology Development Program of Shaanxi Province, China (Grant No. 2010KJXX-02), and the Science and Technology Innovation Foundation of Northwestern Polytechnical University, China.
    [1]

    Chiu L Y S, Lin Y T, Chen C F, Duda T F, Calder B 2011 J. Acoust. Soc. Am. 129 260

    [2]

    Zhang Z B, Ma Y L, Yang K D, Yan S F 2005 Acta Acust. 30 103 (in Chinese) [张忠兵, 马远良, 杨坤德, 鄢社锋 2005 声学学报 30 103]

    [3]

    Fan M Y, Guo Y H, Hui J Y 2000 Acta Acust. 25 528 (in Chinese) [范敏毅, 郭玉红, 惠俊英 2000 声学学报 25 528]

    [4]

    Luo W, Schmidt H 2009 J. Acoust. Soc. Am. 125 1384

    [5]

    Huang C, Gerstoft P, Hodgkiss W S 2006 J. Acoust. Soc. Am. 119 3224

    [6]

    Yang K D, Ma Y L 2009 Acta Phys. Sin. 58 1798 (in Chinese) [杨坤德, 马远良 2009 58 1798]

    [7]

    Yang K D, Chapman R, Ma Y L 2007 J. Acoust. Soc. Am. 121 833

    [8]

    Yang K D, Ma Y L, Sun C, Miller J H, Potty G R 2004 IEEE J. Ocean. Eng. 29 964

    [9]

    Yin J W, Hui J Y, Guo L X 2008 Acta Phys. Sin. 57 1753 (in Chinese) [殷敬伟, 惠俊英, 郭龙祥 2008 57 1753]

    [10]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 58 8379]

    [11]

    Zhang X, Zhang Y G, Huang F L, Li J 2010 Mar. Sci. Bull. 29 29 (in Chinese) [张旭, 张永刚, 黄飞灵, 李坚 2010 海洋通报 29 29]

    [12]

    Zhang X, Zhang Y G, Zhang S J, Wu S H 2009 J. Trop. Ocean 28 23 (in Chinese) [张旭, 张永刚, 张胜军, 吴世华 2009 热带海洋学报 28 23]

    [13]

    Wu P M, Guo X G, Wu R S 2002 Acta Oceanol. Sin. 24 179 (in Chinese) [吴培木, 郭小钢, 吴日升 2002 海洋学报 24 179]

    [14]

    Reise B, Etter P C 1997 Proceedings of Undersea Defence Technology Conference (Hamburg: Undersea Defence Technology Organization) pp408---413

    [15]

    Mandelberg M D, Frizzell-Makowski L J F 2000 IEEE Oceans Conference and Exhibition (New York: IEEE) pp105---108

    [16]

    Chu P C, Fan C W 2010 IEEE Oceans 10 1001

    [17]

    Shi M C 2004 Physical Oceanography (Jinan: Shandong Education Press) (in Chinese) [侍茂崇 2004 物理海洋学 (济南:山东教育出版社)]

    [18]

    Wang D X, Wu G X, Xu J J 1999 Chin. Sci. Bull. 44 1226 (in Chinese) [王东晓, 吴国雄, 徐建军 1999 科学通报 44 1226]

    [19]

    Pan A J, Liu Q Y 2005 Chin. Sci. Bull. 50 1523 (in Chinese) [潘爱军, 刘秦玉 2005 科学通报 50 1523]

    [20]

    Jensen V E, Samuel P, Johannessen O M 1997 IEEE J. Geophys. Res. 21 1698

    [21]

    Feng S D, Feng T 2011 Acta Phys. Sin. 60 029202 (in Chinese) [冯士德, 冯涛 2011 60 029202]

    [22]

    Chen C T, Millero F J 1977 J. Acoust. Soc. Am. 62 1129

    [23]

    Christopher S M, Watts D R 1997 J. Acoust. Soc. Am. 102 2058

    [24]

    Del Grosso V A 1974 J. Acoust. Soc. Am. 56 1084

    [25]

    Zhang Y T, Fang K T 1997 Multivariate Statistics Analysis (Beijing: Science Press) (in Chinese) [张尧庭, 方开泰 1997 多元统计分析引论 (北京:科学出版社)]

    [26]

    Sun S P, Zhang L, Hou W, Feng G L 2011 Acta Phys. Sin. 60 029201 (in Chinese) [孙树鹏, 张璐, 侯威, 封国林 2011 60 029201]

    [27]

    Shen Y H, Ma Y L, Tu Q P, Jiang X Q 1999 Appl. Acoust. 20 21 (in Chinese) [沈远海, 马远良, 屠庆平, 姜小权 1999 应用声学 20 21]

  • [1]

    Chiu L Y S, Lin Y T, Chen C F, Duda T F, Calder B 2011 J. Acoust. Soc. Am. 129 260

    [2]

    Zhang Z B, Ma Y L, Yang K D, Yan S F 2005 Acta Acust. 30 103 (in Chinese) [张忠兵, 马远良, 杨坤德, 鄢社锋 2005 声学学报 30 103]

    [3]

    Fan M Y, Guo Y H, Hui J Y 2000 Acta Acust. 25 528 (in Chinese) [范敏毅, 郭玉红, 惠俊英 2000 声学学报 25 528]

    [4]

    Luo W, Schmidt H 2009 J. Acoust. Soc. Am. 125 1384

    [5]

    Huang C, Gerstoft P, Hodgkiss W S 2006 J. Acoust. Soc. Am. 119 3224

    [6]

    Yang K D, Ma Y L 2009 Acta Phys. Sin. 58 1798 (in Chinese) [杨坤德, 马远良 2009 58 1798]

    [7]

    Yang K D, Chapman R, Ma Y L 2007 J. Acoust. Soc. Am. 121 833

    [8]

    Yang K D, Ma Y L, Sun C, Miller J H, Potty G R 2004 IEEE J. Ocean. Eng. 29 964

    [9]

    Yin J W, Hui J Y, Guo L X 2008 Acta Phys. Sin. 57 1753 (in Chinese) [殷敬伟, 惠俊英, 郭龙祥 2008 57 1753]

    [10]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 58 8379]

    [11]

    Zhang X, Zhang Y G, Huang F L, Li J 2010 Mar. Sci. Bull. 29 29 (in Chinese) [张旭, 张永刚, 黄飞灵, 李坚 2010 海洋通报 29 29]

    [12]

    Zhang X, Zhang Y G, Zhang S J, Wu S H 2009 J. Trop. Ocean 28 23 (in Chinese) [张旭, 张永刚, 张胜军, 吴世华 2009 热带海洋学报 28 23]

    [13]

    Wu P M, Guo X G, Wu R S 2002 Acta Oceanol. Sin. 24 179 (in Chinese) [吴培木, 郭小钢, 吴日升 2002 海洋学报 24 179]

    [14]

    Reise B, Etter P C 1997 Proceedings of Undersea Defence Technology Conference (Hamburg: Undersea Defence Technology Organization) pp408---413

    [15]

    Mandelberg M D, Frizzell-Makowski L J F 2000 IEEE Oceans Conference and Exhibition (New York: IEEE) pp105---108

    [16]

    Chu P C, Fan C W 2010 IEEE Oceans 10 1001

    [17]

    Shi M C 2004 Physical Oceanography (Jinan: Shandong Education Press) (in Chinese) [侍茂崇 2004 物理海洋学 (济南:山东教育出版社)]

    [18]

    Wang D X, Wu G X, Xu J J 1999 Chin. Sci. Bull. 44 1226 (in Chinese) [王东晓, 吴国雄, 徐建军 1999 科学通报 44 1226]

    [19]

    Pan A J, Liu Q Y 2005 Chin. Sci. Bull. 50 1523 (in Chinese) [潘爱军, 刘秦玉 2005 科学通报 50 1523]

    [20]

    Jensen V E, Samuel P, Johannessen O M 1997 IEEE J. Geophys. Res. 21 1698

    [21]

    Feng S D, Feng T 2011 Acta Phys. Sin. 60 029202 (in Chinese) [冯士德, 冯涛 2011 60 029202]

    [22]

    Chen C T, Millero F J 1977 J. Acoust. Soc. Am. 62 1129

    [23]

    Christopher S M, Watts D R 1997 J. Acoust. Soc. Am. 102 2058

    [24]

    Del Grosso V A 1974 J. Acoust. Soc. Am. 56 1084

    [25]

    Zhang Y T, Fang K T 1997 Multivariate Statistics Analysis (Beijing: Science Press) (in Chinese) [张尧庭, 方开泰 1997 多元统计分析引论 (北京:科学出版社)]

    [26]

    Sun S P, Zhang L, Hou W, Feng G L 2011 Acta Phys. Sin. 60 029201 (in Chinese) [孙树鹏, 张璐, 侯威, 封国林 2011 60 029201]

    [27]

    Shen Y H, Ma Y L, Tu Q P, Jiang X Q 1999 Appl. Acoust. 20 21 (in Chinese) [沈远海, 马远良, 屠庆平, 姜小权 1999 应用声学 20 21]

  • [1] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法.  , 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [2] 孙冠文, 崔寒茵, 李超, 林伟军. 火星大气频散声速剖面建模方法及其对声传播路径的影响.  , 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [3] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法.  , 2021, (): . doi: 10.7498/aps.70.20211665
    [4] 方明卫, 何建超, 包芸. 湍流热对流温度剖面双参数拟合及其变化特性.  , 2020, 69(17): 174701. doi: 10.7498/aps.69.20200073
    [5] 谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛. 权重函数对关联方程估计超声速混合层波前方差精度的影响.  , 2019, 68(9): 094202. doi: 10.7498/aps.68.20182269
    [6] 屈科, 朴胜春, 朱凤芹. 一种基于内潮动力特征的浅海声速剖面构建新方法.  , 2019, 68(12): 124302. doi: 10.7498/aps.68.20181867
    [7] 范虹, 韦文瑾, 朱艳春. 基于二维集合经验模式分解的距离正则化水平集磁共振图像分割.  , 2016, 65(16): 168701. doi: 10.7498/aps.65.168701
    [8] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响.  , 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [9] 唐洁. 基于聚合经验模态分解方法的OJ 287 射电流量变化周期分析.  , 2013, 62(12): 129701. doi: 10.7498/aps.62.129701
    [10] 薛春芳, 侯威, 赵俊虎, 王式功. 集合经验模态分解在区域降水变化多尺度分析及气候变化响应研究中的应用.  , 2013, 62(10): 109203. doi: 10.7498/aps.62.109203
    [11] 侯威, 孙树鹏, 张世轩, 赵俊虎, 封国林. 东亚地区大气环流的季节划分及其时空变化特征.  , 2011, 60(10): 109201. doi: 10.7498/aps.60.109201
    [12] 王超营, 王振清, 孟庆元. 空位的第一性原理及经验势函数的对比研究.  , 2010, 59(5): 3370-3376. doi: 10.7498/aps.59.3370
    [13] 刘建东, 余有明. 基于可变参数双向耦合映像系统的时空混沌Hash函数设计.  , 2007, 56(3): 1297-1304. doi: 10.7498/aps.56.1297
    [14] 龚志强, 封国林, 万仕全, 李建平. 基于启发式分割算法检测华北和全球气候变化的特征.  , 2006, 55(1): 477-484. doi: 10.7498/aps.55.477
    [15] 张 瀚, 王秀峰, 李朝晖, 刘大海. 基于时空混沌系统的单向Hash函数构造.  , 2005, 54(9): 4006-4011. doi: 10.7498/aps.54.4006
    [16] 任国斌, 王 智, 娄淑琴, 简水生. 椭圆孔光子晶体光纤的本地正交函数模型.  , 2004, 53(2): 484-489. doi: 10.7498/aps.53.484
    [17] 龚学余, 石秉仁, 张锦华, 邱小平, 凌球. Tokamak中自举电流的剖面准直性.  , 2002, 51(11): 2547-2555. doi: 10.7498/aps.51.2547
    [18] 李海洋, 朱立, 徐亚伯, 蔡莲珍. CO在K/Cu(111)表面吸附的功函数变化.  , 1991, 40(4): 625-629. doi: 10.7498/aps.40.625
    [19] 王浭, 李海洋, 徐亚伯. K/Cu(111)表面功函数的变化.  , 1990, 39(12): 1989-1993. doi: 10.7498/aps.39.1989
    [20] 许祯镛. 随机海洋声信道下的噪声场时空相关函数.  , 1976, 25(3): 246-253. doi: 10.7498/aps.25.246
计量
  • 文章访问数:  8271
  • PDF下载量:  774
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-13
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回
Baidu
map