-
为研究微孔洞对锡的高压相变的影响, 对含亚微米孔洞的疏松锡(疏松度m=1.01)进行了冲击加载-卸载实验. 利用DPS(Doppler pins system)测得了31.8-66.1 GPa冲击压力下疏松锡/LiF界面粒子的速度剖面, 获得了各压力下的纵波声速与体波声速, 给出了该疏松锡的冲击熔化起始压力约为49.1 GPa, 获得了各压力下的剪切模量与泊松比. 结合密实锡与疏松锡的高压纵波声速、体波声速与剪切模量, 界定密实锡的冲击熔化压力在53.5-62.3 GPa之间, 高于疏松锡的值, 表明微孔洞明显降低了冲击熔化压力. 对密实锡准确的冲击熔化压力值还需要进一步的实验数据. 测试的固态压力范围内的声速数据没有明显奇异点, 表明疏松锡没有类似密实锡的固态bcc 相变发生.Shock and release experiments are performed on the porous Sn with sub-micropores with porosity m=1.01. Time-resolved interfacial velocities between the porous Sn and LiF window are measured with Doppler pins system under seven pressure points from 31.8 GPa to 66.1 GPa. From the interfacial velocity, the Euler longitudinal sound velocities and the bulk sound velocities are obtained. The corresponding Poisson ratio and shear modulus are determined, too. From the transition of longitudinal sound velocity to bulk sound velocity at high pressures, the shock-induced melting of Sn with porosity 1.01 occurs at about 49.1 GPa. With the Euler longitudinal sound velocities, the bulk sound velocities and the shear moduluses of porous and dense Sn, the melting pressure zone of dense Sn can be determined to be between 53.5 GPa and 62.3 GPa. Comparing the melting zone of porous Sn and that of dense Sn, micropores in the material reduce the the shock melting pressure obviously. The Exact shock melting pressure of dense Sn needs further experimental data in the corresponding pressure zone. From the longitudinal velocity of porous Sn in the measured solid zone, no bcc phase transition takes place for this material. This may relate with the micropores in the material or the difference in material component, which needs further investigating.
-
Keywords:
- porous tin /
- sound velocity /
- shock melting /
- phase transition
[1] Erhart P, Bringa E M, Kumar M 2005 Phys. Rev. B 72 052104
[2] Burakovsky L, Preston D L, Silbar R R 1999 Phys. Rev. B 61 15011
[3] Burakovsky L, Preston D L, Silbar R R 2000 J. Appl. Phys. 88 6294
[4] Gomez L, Dobry A, Diep H T 2001 Phys. Rev. B 63 224103
[5] Lutsko J F, Wolf D, Phillpot S R 1989 Phys. Rev. B 40 2841
[6] Agrawal P M 2003 J. Chem. Phys. 118 9680
[7] Keifer B, Duffy T S, Uchida T 2002 APS User Activity Report
[8] Schwager B, Ross M, Stefanie Japel, Reinhard Boehler 2010 J. Chem. Phys. 133 084501
[9] Weir S T, Lipp M J, Falabella S 2012 J. Appl. Phys. 111 123529
[10] Hereil P L, Mabire C 2000 J. Phys. IV (France) 10 Pr9-799-Pr9-804
[11] Hu J B, Zhou X M, Dai C D 2008 J. Appl. Phys. 104 083520
[12] Zhernokletov M V, Kovalev A E, Komissarov V V, Zocher M A, Cherne F J 2012 Combust. Expl. Shock+ 48 112
[13] Tang W H, Zhang R Q 1999 Equation of State Theory and Calculation Conspectus (Hunan: National University of Defence Technology Press) p517 (in Chinese) [汤文辉, 张若棋 1999 物态方程理论及计算概论 (湖南: 国防科技大学出版社) 第517 页]
[14] Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p191 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社)第191页]
[15] Asay J R, Chhabildas L C 1981 in Meyers M A, Murr L E ed: Shock Waves and High-Strain-Rate Phenomena in Metals (New York: Plenum) p417
[16] Servas E M 2001 in Furnish M D, Thadhani N N, Horie Y ed: Shock Compression of Condensed Matter (New York: AIP 2002) p1200
-
[1] Erhart P, Bringa E M, Kumar M 2005 Phys. Rev. B 72 052104
[2] Burakovsky L, Preston D L, Silbar R R 1999 Phys. Rev. B 61 15011
[3] Burakovsky L, Preston D L, Silbar R R 2000 J. Appl. Phys. 88 6294
[4] Gomez L, Dobry A, Diep H T 2001 Phys. Rev. B 63 224103
[5] Lutsko J F, Wolf D, Phillpot S R 1989 Phys. Rev. B 40 2841
[6] Agrawal P M 2003 J. Chem. Phys. 118 9680
[7] Keifer B, Duffy T S, Uchida T 2002 APS User Activity Report
[8] Schwager B, Ross M, Stefanie Japel, Reinhard Boehler 2010 J. Chem. Phys. 133 084501
[9] Weir S T, Lipp M J, Falabella S 2012 J. Appl. Phys. 111 123529
[10] Hereil P L, Mabire C 2000 J. Phys. IV (France) 10 Pr9-799-Pr9-804
[11] Hu J B, Zhou X M, Dai C D 2008 J. Appl. Phys. 104 083520
[12] Zhernokletov M V, Kovalev A E, Komissarov V V, Zocher M A, Cherne F J 2012 Combust. Expl. Shock+ 48 112
[13] Tang W H, Zhang R Q 1999 Equation of State Theory and Calculation Conspectus (Hunan: National University of Defence Technology Press) p517 (in Chinese) [汤文辉, 张若棋 1999 物态方程理论及计算概论 (湖南: 国防科技大学出版社) 第517 页]
[14] Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p191 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社)第191页]
[15] Asay J R, Chhabildas L C 1981 in Meyers M A, Murr L E ed: Shock Waves and High-Strain-Rate Phenomena in Metals (New York: Plenum) p417
[16] Servas E M 2001 in Furnish M D, Thadhani N N, Horie Y ed: Shock Compression of Condensed Matter (New York: AIP 2002) p1200
计量
- 文章访问数: 6369
- PDF下载量: 407
- 被引次数: 0