搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于cluster态的信道容量可控的可控量子安全直接通信方案

郑晓毅 龙银香

引用本文:
Citation:

基于cluster态的信道容量可控的可控量子安全直接通信方案

郑晓毅, 龙银香

Cluster state based controlled quantum secure direct communication protocol with controllable channel capacity

Zheng Xiao-Yi, Long Yin-Xiang
PDF
导出引用
  • 提出了一种基于五粒子cluster态的信道容量可控的可控量子安全直接通信方案.通信三方利用五粒子cluster态自身的粒子分布情况,结合诱骗光子,对粒子分别做Z基单粒子测量和Bell基测量,便可完成信道的第一次安全性检测.通信控制方Cindy通过对手中的粒子序列随机选用测量基(Z基或者X基)测量来决定信道容量,并通过经典信道公布结果.发送方Alice将要发送的信息以及校检信息用于对手中的粒子序列进行幺正操作编码,并插入诱骗光子后将编码后的粒子序列发给接收方Bob并通过经典信道告知其诱骗光子的位置信息.Bob接收到粒子序列后,按照经典信道Alice发送的信息,结合Cindy公布的信息,剔除诱骗光子后按照一定的规则对手中的两组粒子序列进行Bell基测量,便可解码完成第二次安全性检测以及得到Alice发送的信息.通过对五粒子cluster态的纠缠结构性质进行分析,阐明了五粒子cluster态在该方案中所表现出的特点的物理缘由.结果表明,只需变化测量基的规则和用于编码的粒子,可以将该方案推广成可控双向量子安全直接通信.
    Controllable quantum secure direct communication is an important branch of quantum communication. In this paper, we propose a controlled quantum secure direct communication protocol with channel capacity controllable based on a five-particle cluster state. To start with, the sender Alice prepares the five-particle cluster state sequence and inserts decoy photon randomly, and then sends two parts of the particle sequence to the receiver Bob and the controller Cindy, and meanwhile keeps one part of the particle sequence himself. After Bob and Cindy receive the particle sequence, Alice performs a Z-based single-particle measurement and publishes the measurement results and the position information of the decoy photon through the classical channel. According to the information published by Alice, Bob and Cindy remove the decoy photon and perform a Bell-state measurement to their own part particle sequence. Three sides of communication complete the first safety examination of the channel by checking the bit error rate of the measurement results. After that, the controller Cindy determines the channel capacity by selecting the measurement base (Z basis or X basis) to measure its own particle sequence, and then announces the measured results with classical channel. The sender Alice inserts decoy photon and codes the information by doing a unitary transformation to its own particle sequence and then sends the receiver Bob and tells him the position information of the decoy photon with classical channel. Combining the information published by Cindy with the information transmitted by Alice, Bob can complete the second safety examination of the channel and decode the information Alice has sent by removing decoy photon and performing a Bell-state measurement of his own two groups of particle with appropriate rules. Through an analysis of the entangled structural properties of the five-particle cluster state, it has been confirmed that this protocol is designed to make full use of the entanglement properties of the five-particle cluster in different entangled structures. Therefore the protocol can obviously be generalized into the two-way controlled quantum secure direct communication by simply changing the rules of the measurement and the particles used for unitary coding. Through analyzing the security of this protocol, it reveals that this protocol can effectively both prevent eavesdroppers from eavesdropping useful information and monitor this kind of act, and therefore the controlled quantum secure direct communication can theoretically be established in a certain noise environment.
      通信作者: 郑晓毅, kyle87@126.com
    • 基金项目: 广东省自然科学基金(批准号:2016a030313736)资助的课题.
      Corresponding author: Zheng Xiao-Yi, kyle87@126.com
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2016a030313736).
    [1]

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. China:Phys. Mech. Astron. 41 332(in Chinese)[龙桂鲁, 王川, 李岩松, 邓富国2011中国科学:物理力学天文学 41 332]

    [2]

    Long G L, Qin G Q 2014 Phys. Eng. 24 3(in Chinese)[龙桂鲁, 秦国卿2014物理与工程 24 3]

    [3]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [4]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [5]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [6]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305

    [7]

    Gu B, Zhang C Y, Cheng G S, Huang Y G 2011 Sci. China:Phys. Mech. Astron. 54 942

    [8]

    Wang C, Deng F G, Long G L 2005 Opt. Commun. 253 15

    [9]

    Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhou H Y 2007 Chin. Phys. 16 2149

    [10]

    Shi J, Gong Y X, Xu P, Zhu S N, Zhan Y B 2011 Commun. Theor. Phys. 56 831

    [11]

    Wang T J, Li T, Du F F, Deng F G 2011 Chin. Phys. Lett. 28 040305

    [12]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [13]

    Borhani M, Loss D 2005 Phys. Rev. A 71 032308

    [14]

    Browne D E, Rudolph T 2005 Phys. Rev. Lett. 95 010501

    [15]

    Zou X B, Mathis W 2005 Phys. Rev. A 72 013809

    [16]

    Yu L Z, Wu T 2013 Acta Photon. Sin. 42 623(in Chinese)[于立志, 吴韬2013光子学报 42 623]

    [17]

    Li Y H, Liu J C, Nie Y Y 2010 Acta Photon. Sin. 39 2073(in Chinese)[李渊华, 刘俊昌, 聂义友2010光子学报 39 2073]

    [18]

    Tian D Y, Tao Y J, Qin M 2008 Sci. China G:Phys. Mech. Astron. 38 1128(in Chinese)[田东平, 陶应娟, 秦猛2008中国科学G辑:物理力学天文学 38 1128]

    [19]

    Li Y P, Wang T Y, Yi B Y 2014 Acta Photon. Sin. 43 0927002(in Chinese)[李艳平, 王天银, 易宝银2014光子学报 43 0927002]

    [20]

    Sun X M, Zha X W, Qi J X 2013 Acta Phys. Sin. 62 230302(in Chinese)[孙新梅, 查新末, 祁建霞2013 62 230302]

    [21]

    Nie Y Y, Hong Z H, Huang Y B, Yi X J, Li S S 2009 Int. J. Theor. Phys. 48 1485

    [22]

    An Y 2013 Int. J. Theor. Phys. 52 3870

    [23]

    Li Y H, Liu J C, Nie Y Y 2011 Acta Photon. Sin. 40 307(in Chinese)[李渊华, 刘俊昌, 聂义友2011光子学报 40 307]

    [24]

    Wu L W, Ye Z Q 2014 Chin. J. Quantum Electron. 31 291(in Chinese)[吴柳雯, 叶志清2014量子电子学报 31 291]

    [25]

    Zheng X Y 2016 Chin. J. Quantum Electron. 33 177(in Chinese)[郑晓毅2016量子电子学报 33 177]

    [26]

    Wang D, Zha X W 2011 Chin. J. Quantum Electron. 28 687

    [27]

    Sun Z W, Du R G, Long D Y 2012 Int. J. Theor. Phys. 51 1946

    [28]

    Li J, Song D J, Guo X J, Jing B 2012 Chin. Phys. C 36 31

    [29]

    Chang Y, Xu C X, Zhang S B, Yan L L 2014 Chin. Sci. Bull. 59 2541

    [30]

    Gao F, Guo F Z, Wen Q Y 2008 Chin. Phys. Lett. 25 2766

    [31]

    Cao W F, Yang Y G, Wen Q Y 2010 Sci. China:Phys. Mech. Astron. 53 1271

    [32]

    Chang Y, Zhang W B, Zhang S B, Wang H C, Yan L L, Han G H, Sheng Z W, Huang Y Y, Suo W, Xiong J X 2016 Commun. Theor. Phys. 66 621

    [33]

    Li C Y, Zhou H Y, Wang Y, Deng F G 2005 Chin. Phys. Lett. 22 1049

    [34]

    Li C Y, Li X H, Deng F G 2006 Chin. Phys. Lett. 23 2896

    [35]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2006 Phys. Lett. A 359 359

    [36]

    Lucamarini M, Mancini S 2005 Phys. Rev. Lett. 94 140501

    [37]

    Li X H 2015 Acta Phys. Sin. 64 160307(in Chinese)[李熙涵2015 64 160307]

    [38]

    Lu H, Fung C H F, Ma X, Cai Q Y 2011 Phys. Rev. A 84 042344

  • [1]

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. China:Phys. Mech. Astron. 41 332(in Chinese)[龙桂鲁, 王川, 李岩松, 邓富国2011中国科学:物理力学天文学 41 332]

    [2]

    Long G L, Qin G Q 2014 Phys. Eng. 24 3(in Chinese)[龙桂鲁, 秦国卿2014物理与工程 24 3]

    [3]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [4]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [5]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [6]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305

    [7]

    Gu B, Zhang C Y, Cheng G S, Huang Y G 2011 Sci. China:Phys. Mech. Astron. 54 942

    [8]

    Wang C, Deng F G, Long G L 2005 Opt. Commun. 253 15

    [9]

    Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhou H Y 2007 Chin. Phys. 16 2149

    [10]

    Shi J, Gong Y X, Xu P, Zhu S N, Zhan Y B 2011 Commun. Theor. Phys. 56 831

    [11]

    Wang T J, Li T, Du F F, Deng F G 2011 Chin. Phys. Lett. 28 040305

    [12]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [13]

    Borhani M, Loss D 2005 Phys. Rev. A 71 032308

    [14]

    Browne D E, Rudolph T 2005 Phys. Rev. Lett. 95 010501

    [15]

    Zou X B, Mathis W 2005 Phys. Rev. A 72 013809

    [16]

    Yu L Z, Wu T 2013 Acta Photon. Sin. 42 623(in Chinese)[于立志, 吴韬2013光子学报 42 623]

    [17]

    Li Y H, Liu J C, Nie Y Y 2010 Acta Photon. Sin. 39 2073(in Chinese)[李渊华, 刘俊昌, 聂义友2010光子学报 39 2073]

    [18]

    Tian D Y, Tao Y J, Qin M 2008 Sci. China G:Phys. Mech. Astron. 38 1128(in Chinese)[田东平, 陶应娟, 秦猛2008中国科学G辑:物理力学天文学 38 1128]

    [19]

    Li Y P, Wang T Y, Yi B Y 2014 Acta Photon. Sin. 43 0927002(in Chinese)[李艳平, 王天银, 易宝银2014光子学报 43 0927002]

    [20]

    Sun X M, Zha X W, Qi J X 2013 Acta Phys. Sin. 62 230302(in Chinese)[孙新梅, 查新末, 祁建霞2013 62 230302]

    [21]

    Nie Y Y, Hong Z H, Huang Y B, Yi X J, Li S S 2009 Int. J. Theor. Phys. 48 1485

    [22]

    An Y 2013 Int. J. Theor. Phys. 52 3870

    [23]

    Li Y H, Liu J C, Nie Y Y 2011 Acta Photon. Sin. 40 307(in Chinese)[李渊华, 刘俊昌, 聂义友2011光子学报 40 307]

    [24]

    Wu L W, Ye Z Q 2014 Chin. J. Quantum Electron. 31 291(in Chinese)[吴柳雯, 叶志清2014量子电子学报 31 291]

    [25]

    Zheng X Y 2016 Chin. J. Quantum Electron. 33 177(in Chinese)[郑晓毅2016量子电子学报 33 177]

    [26]

    Wang D, Zha X W 2011 Chin. J. Quantum Electron. 28 687

    [27]

    Sun Z W, Du R G, Long D Y 2012 Int. J. Theor. Phys. 51 1946

    [28]

    Li J, Song D J, Guo X J, Jing B 2012 Chin. Phys. C 36 31

    [29]

    Chang Y, Xu C X, Zhang S B, Yan L L 2014 Chin. Sci. Bull. 59 2541

    [30]

    Gao F, Guo F Z, Wen Q Y 2008 Chin. Phys. Lett. 25 2766

    [31]

    Cao W F, Yang Y G, Wen Q Y 2010 Sci. China:Phys. Mech. Astron. 53 1271

    [32]

    Chang Y, Zhang W B, Zhang S B, Wang H C, Yan L L, Han G H, Sheng Z W, Huang Y Y, Suo W, Xiong J X 2016 Commun. Theor. Phys. 66 621

    [33]

    Li C Y, Zhou H Y, Wang Y, Deng F G 2005 Chin. Phys. Lett. 22 1049

    [34]

    Li C Y, Li X H, Deng F G 2006 Chin. Phys. Lett. 23 2896

    [35]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2006 Phys. Lett. A 359 359

    [36]

    Lucamarini M, Mancini S 2005 Phys. Rev. Lett. 94 140501

    [37]

    Li X H 2015 Acta Phys. Sin. 64 160307(in Chinese)[李熙涵2015 64 160307]

    [38]

    Lu H, Fung C H F, Ma X, Cai Q Y 2011 Phys. Rev. A 84 042344

  • [1] 周贤韬, 江英华. 带身份认证的量子安全直接通信方案.  , 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [2] 周贤韬, 江英华, 郭晓军, 彭展. 带双向身份认证的基于单光子和Bell态混合的量子安全直接通信方案.  , 2023, 72(13): 130302. doi: 10.7498/aps.72.20221972
    [3] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信.  , 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [4] 赵宁, 江英华, 周贤韬. 基于单光子的高效量子安全直接通信方案.  , 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [5] 龚黎华, 陈振泳, 徐良超, 周南润. 基于高维单粒子态的双向半量子安全直接通信协议.  , 2022, 71(13): 130304. doi: 10.7498/aps.71.20211702
    [6] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响.  , 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [7] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题.  , 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [8] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案.  , 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [9] 李熙涵. 量子直接通信.  , 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [10] 尹逊汝, 马文平, 申冬苏, 王丽丽. 基于Bell态的三方量子密钥协商.  , 2013, 62(17): 170304. doi: 10.7498/aps.62.170304
    [11] 梁彦霞, 聂敏. 一种应用于量子数据压缩的幺正变换生成方法.  , 2013, 62(20): 200305. doi: 10.7498/aps.62.200305
    [12] 孙新梅, 查新未, 祁建霞, 兰倩. 基于非最大纠缠的五粒子Cluster态的高效量子态共享方案.  , 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [13] 王东. 正交振幅正关联正交位相反关联光束的贝尔态直接测量.  , 2010, 59(11): 7596-7601. doi: 10.7498/aps.59.7596
    [14] 上官丽英, 孙洪祥, 陈秀波, 温巧燕, 朱甫臣. 三粒子纠缠W态隐形传态的正交完备基展开与算符变换.  , 2009, 58(3): 1371-1376. doi: 10.7498/aps.58.1371
    [15] 陈立冰, 谭鹏, 董少光, 路洪. 利用二粒子部分纠缠态实现开靶目标的非局域量子可控非(CNOT)门的受控操作.  , 2009, 58(10): 6772-6778. doi: 10.7498/aps.58.6772
    [16] 刘玉玲, 满忠晓, 夏云杰. 用非最大纠缠信道对任意二粒子纠缠态的量子秘密分享.  , 2008, 57(5): 2680-2686. doi: 10.7498/aps.57.2680
    [17] 王天银, 秦素娟, 温巧燕, 朱甫臣. 多方控制的量子安全直接通信协议的分析及改进.  , 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [18] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨.  , 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [19] 王 剑, 陈皇卿, 张 权, 唐朝京. 多方控制的量子安全直接通信协议.  , 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [20] 符 建, 高孝纯, 许晶波, 邹旭波. 与不变量有关的幺正变换方法和含时均匀电场中的量子Dirac场的演化.  , 1999, 48(6): 1011-1022. doi: 10.7498/aps.48.1011
计量
  • 文章访问数:  6841
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-10
  • 修回日期:  2017-06-02
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map