-
基于单根10 m大模场面积保偏光子晶体光纤, 搭建了带有色散图的放大自相似振荡器; 通过仔细调节腔内色散量的大小以及位于色散补偿端的端镜前的狭缝位置和大小, 实现了稳定的锁模运转, 获得了抛物线形脉冲输出. 输出脉冲的重复频率为8.6 MHz, 脉冲宽度为6.2 ps, 光谱宽度为3.84 nm, 平均功率820 mW, 对应单脉冲能量95 nJ. 这是第一次在自相似振荡器中直接获得重复频率在10 MHz 以下的脉冲输出, 95 nJ也是目前自相似振荡器直接输出的最高脉冲能量. 通过数值模拟证实了在第一个光栅的零级反射处和狭缝滤波后可以分别实现抛物线型脉冲和高斯脉冲的两种锁模脉冲输出.
-
关键词:
- 大模场面积光子晶体光纤 /
- 自相似演化 /
- 放大自相似 /
- 色散图
Ultrashort pulse laser with a repetition rate of below 10 MHz is suitable for a variety of micromachining applications to avoid plasma shielding effects. Besides, the parabolic pulse possesses clean wings, short pulse duration, and large peak power because only the linear chirp is accumulated during the propagation. Based on these two points, a similariton oscillator with a repetition rate of below 10 MHz is a most perfect seed source of an amplification system for micromachining. In this paper, an amplifier similariton oscillator with dispersion map based on a piece of 10 m Yb-doped large-mode-area single-polarization photonic crystal fiber is demonstrated. The semiconductor saturable absorber mirror is employed in the linear cavity as an end mirror to initiate and maintain the mode-locking operation. An adjustable slit is adopted between the end mirror and grating pair in another arm, as a central wavelength adjuster and the spectral filter to ensure the laser operational wavelength in accordance with the working wavelength of semiconductor saturable absorber mirror and the stability of mode-locking operation. The stable single-pulse mode-locking operation can be achieved by adjusting the intracavity dispersion and the operating wavelength. With the net cavity dispersion of-0.89 ps2, a spectrum with steep and smooth edges is obtained, which means that the laser does not operate in the soliton regime but in the dispersion-mapped amplifier similariton regime. A highest output power of 820 mW is obtained with a pulse duration of 6.2 ps and spectral width of 3.84 nm under a pump power of 12.8 W. The repetition rate is 8.6 MHz, corresponding to a pulse energy of 95 nJ. It is the first time that the similariton with a repetition rate of lower than 10 MHz and a highest pulse energy of 95 nJ from a similariton laser has been achieved, to the best of our knowledge. Numerical simulation results confirm that the self-similar evolution is achieved in the gain fiber, and the parabolic-and gauss-shaped pulse can be emitted at the zero-order reflection of the grating and after the slit, respectively.-
Keywords:
- large-mode-area photonic crystal fiber /
- self-similar evolution /
- amplifier similariton /
- dispersion-map
[1] Fermann M E, Hartl I 2013 Nature Photon. 7 868
[2] Killi A, Dörring J, Morgner U, Lederer M J, Frei J, Kopf D 2005 Opt. Express 13 061916
[3] Cho S H, Bouma B E, Ippen E P, Fujimoto J G 1999 Opt. Lett. 24 06417
[4] Yang J H, Guo C Y, Ruan S C, Ouyang D Q, Lin H Q, Wu Y M 2014 Chin. Phys. Lett. 31 024208
[5] Luo Z C, Lin Z B, Li J Y, Zhu P F, Ning Q Y, Xing X B, Luo A P, Xu W C 2014 Chin. Phys. B 23 064203
[6] Želudevičius J, Danilevičius R, Viskontas K, Rusteika N, Regelskis K 2013 Opt. Express 21 055338
[7] Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201(in Chinese) [姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 63 184201]
[8] Huang Z Y, Leng Y X, Dai Y 2014 Chin. Phys. B 23 124210
[9] Fermann M E, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 266010
[10] Kruglov V I, Peacock A C, Harvey J D, Dudley J M 2002 J. Opt. Soc. Am. B 19 03461
[11] Chang G, Galvanauskas A, Winful H G, Norris T B 2004 Opt. Lett. 29 222647
[12] Ilday F Ö, Buckley J R, Clark W G, Wise F W 2004 Phys. Rev. Lett. 92 213902
[13] Oktem B,lgdr C, Ilday F Ö 2010 Nature Photon. 4 307
[14] Bale B G, Wabnitz S 2010 Opt. Lett. 35 142466
[15] Boscolo S, Turitsyn S K, Finot C 2012 Opt. Lett. 37 214531
[16] Renninger W H, Chong A, Wise F W 2010 Phys. Rev. A 82 021805
[17] Renninger W H, Chong A, Wise F W 2011 Opt. Express 19 2322496
[18] Nie B, Pestov D, Wise F W, Dantus M 2011 Opt. Express 19 1312074
[19] Lefrancois S, Liu C, Stock M L, Sosnowski T S, Galvanauskas A, Wise F W 2013 Opt. Lett. 38 0143
[20] Shi J K, Chai L, Zhao X W, Li J, Liu B W, Hu M L, Li Y F, Wang Q Y 2014 Chin. J. Laser 41 0202001 (in Chinese) [石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月 2014 中国激光 41 0202001]
[21] Kelly S M J 1992 Electron. Lett. 28 806
[22] Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (New York: Academic Press) pp41-45
[23] Finot C, Parmigiani F, Petropoulos P, Richardson D J 2006 Opt. Express 14 083161
-
[1] Fermann M E, Hartl I 2013 Nature Photon. 7 868
[2] Killi A, Dörring J, Morgner U, Lederer M J, Frei J, Kopf D 2005 Opt. Express 13 061916
[3] Cho S H, Bouma B E, Ippen E P, Fujimoto J G 1999 Opt. Lett. 24 06417
[4] Yang J H, Guo C Y, Ruan S C, Ouyang D Q, Lin H Q, Wu Y M 2014 Chin. Phys. Lett. 31 024208
[5] Luo Z C, Lin Z B, Li J Y, Zhu P F, Ning Q Y, Xing X B, Luo A P, Xu W C 2014 Chin. Phys. B 23 064203
[6] Želudevičius J, Danilevičius R, Viskontas K, Rusteika N, Regelskis K 2013 Opt. Express 21 055338
[7] Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201(in Chinese) [姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 63 184201]
[8] Huang Z Y, Leng Y X, Dai Y 2014 Chin. Phys. B 23 124210
[9] Fermann M E, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 266010
[10] Kruglov V I, Peacock A C, Harvey J D, Dudley J M 2002 J. Opt. Soc. Am. B 19 03461
[11] Chang G, Galvanauskas A, Winful H G, Norris T B 2004 Opt. Lett. 29 222647
[12] Ilday F Ö, Buckley J R, Clark W G, Wise F W 2004 Phys. Rev. Lett. 92 213902
[13] Oktem B,lgdr C, Ilday F Ö 2010 Nature Photon. 4 307
[14] Bale B G, Wabnitz S 2010 Opt. Lett. 35 142466
[15] Boscolo S, Turitsyn S K, Finot C 2012 Opt. Lett. 37 214531
[16] Renninger W H, Chong A, Wise F W 2010 Phys. Rev. A 82 021805
[17] Renninger W H, Chong A, Wise F W 2011 Opt. Express 19 2322496
[18] Nie B, Pestov D, Wise F W, Dantus M 2011 Opt. Express 19 1312074
[19] Lefrancois S, Liu C, Stock M L, Sosnowski T S, Galvanauskas A, Wise F W 2013 Opt. Lett. 38 0143
[20] Shi J K, Chai L, Zhao X W, Li J, Liu B W, Hu M L, Li Y F, Wang Q Y 2014 Chin. J. Laser 41 0202001 (in Chinese) [石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月 2014 中国激光 41 0202001]
[21] Kelly S M J 1992 Electron. Lett. 28 806
[22] Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (New York: Academic Press) pp41-45
[23] Finot C, Parmigiani F, Petropoulos P, Richardson D J 2006 Opt. Express 14 083161
计量
- 文章访问数: 5525
- PDF下载量: 234
- 被引次数: 0