搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于10 m光子晶体光纤的放大自相似锁模振荡器研究

石俊凯 柴路 赵晓薇 刘博文 胡明列 栗岩锋 王清月

引用本文:
Citation:

基于10 m光子晶体光纤的放大自相似锁模振荡器研究

石俊凯, 柴路, 赵晓薇, 刘博文, 胡明列, 栗岩锋, 王清月

Amplifier similariton oscillator using 10 m photonic crystal fiber

Shi Jun-Kai, Chai Lu, Zhao Xiao-Wei, Liu Bo-Wen, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue
PDF
导出引用
  • 基于单根10 m大模场面积保偏光子晶体光纤, 搭建了带有色散图的放大自相似振荡器; 通过仔细调节腔内色散量的大小以及位于色散补偿端的端镜前的狭缝位置和大小, 实现了稳定的锁模运转, 获得了抛物线形脉冲输出. 输出脉冲的重复频率为8.6 MHz, 脉冲宽度为6.2 ps, 光谱宽度为3.84 nm, 平均功率820 mW, 对应单脉冲能量95 nJ. 这是第一次在自相似振荡器中直接获得重复频率在10 MHz 以下的脉冲输出, 95 nJ也是目前自相似振荡器直接输出的最高脉冲能量. 通过数值模拟证实了在第一个光栅的零级反射处和狭缝滤波后可以分别实现抛物线型脉冲和高斯脉冲的两种锁模脉冲输出.
    Ultrashort pulse laser with a repetition rate of below 10 MHz is suitable for a variety of micromachining applications to avoid plasma shielding effects. Besides, the parabolic pulse possesses clean wings, short pulse duration, and large peak power because only the linear chirp is accumulated during the propagation. Based on these two points, a similariton oscillator with a repetition rate of below 10 MHz is a most perfect seed source of an amplification system for micromachining. In this paper, an amplifier similariton oscillator with dispersion map based on a piece of 10 m Yb-doped large-mode-area single-polarization photonic crystal fiber is demonstrated. The semiconductor saturable absorber mirror is employed in the linear cavity as an end mirror to initiate and maintain the mode-locking operation. An adjustable slit is adopted between the end mirror and grating pair in another arm, as a central wavelength adjuster and the spectral filter to ensure the laser operational wavelength in accordance with the working wavelength of semiconductor saturable absorber mirror and the stability of mode-locking operation. The stable single-pulse mode-locking operation can be achieved by adjusting the intracavity dispersion and the operating wavelength. With the net cavity dispersion of-0.89 ps2, a spectrum with steep and smooth edges is obtained, which means that the laser does not operate in the soliton regime but in the dispersion-mapped amplifier similariton regime. A highest output power of 820 mW is obtained with a pulse duration of 6.2 ps and spectral width of 3.84 nm under a pump power of 12.8 W. The repetition rate is 8.6 MHz, corresponding to a pulse energy of 95 nJ. It is the first time that the similariton with a repetition rate of lower than 10 MHz and a highest pulse energy of 95 nJ from a similariton laser has been achieved, to the best of our knowledge. Numerical simulation results confirm that the self-similar evolution is achieved in the gain fiber, and the parabolic-and gauss-shaped pulse can be emitted at the zero-order reflection of the grating and after the slit, respectively.
      通信作者: 柴路, lu_chai@tju.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB327604, 2011CB808101, 2014CB339800)、国家自然科学基金(批准号: 61377041, 61322502, 61377047, 61027013)和长江学者和创新团队发展计划(批准号: IRT13033) 资助的课题.
      Corresponding author: Chai Lu, lu_chai@tju.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327604, 2011CB808101, 2014CB339800), the National Natural Science Foundation of China (Grant Nos. 61377041, 61322502, 61377047, 61027013), and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13033).
    [1]

    Fermann M E, Hartl I 2013 Nature Photon. 7 868

    [2]

    Killi A, Dörring J, Morgner U, Lederer M J, Frei J, Kopf D 2005 Opt. Express 13 061916

    [3]

    Cho S H, Bouma B E, Ippen E P, Fujimoto J G 1999 Opt. Lett. 24 06417

    [4]

    Yang J H, Guo C Y, Ruan S C, Ouyang D Q, Lin H Q, Wu Y M 2014 Chin. Phys. Lett. 31 024208

    [5]

    Luo Z C, Lin Z B, Li J Y, Zhu P F, Ning Q Y, Xing X B, Luo A P, Xu W C 2014 Chin. Phys. B 23 064203

    [6]

    Želudevičius J, Danilevičius R, Viskontas K, Rusteika N, Regelskis K 2013 Opt. Express 21 055338

    [7]

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201(in Chinese) [姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 63 184201]

    [8]

    Huang Z Y, Leng Y X, Dai Y 2014 Chin. Phys. B 23 124210

    [9]

    Fermann M E, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 266010

    [10]

    Kruglov V I, Peacock A C, Harvey J D, Dudley J M 2002 J. Opt. Soc. Am. B 19 03461

    [11]

    Chang G, Galvanauskas A, Winful H G, Norris T B 2004 Opt. Lett. 29 222647

    [12]

    Ilday F Ö, Buckley J R, Clark W G, Wise F W 2004 Phys. Rev. Lett. 92 213902

    [13]

    Oktem B,lgdr C, Ilday F Ö 2010 Nature Photon. 4 307

    [14]

    Bale B G, Wabnitz S 2010 Opt. Lett. 35 142466

    [15]

    Boscolo S, Turitsyn S K, Finot C 2012 Opt. Lett. 37 214531

    [16]

    Renninger W H, Chong A, Wise F W 2010 Phys. Rev. A 82 021805

    [17]

    Renninger W H, Chong A, Wise F W 2011 Opt. Express 19 2322496

    [18]

    Nie B, Pestov D, Wise F W, Dantus M 2011 Opt. Express 19 1312074

    [19]

    Lefrancois S, Liu C, Stock M L, Sosnowski T S, Galvanauskas A, Wise F W 2013 Opt. Lett. 38 0143

    [20]

    Shi J K, Chai L, Zhao X W, Li J, Liu B W, Hu M L, Li Y F, Wang Q Y 2014 Chin. J. Laser 41 0202001 (in Chinese) [石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月 2014 中国激光 41 0202001]

    [21]

    Kelly S M J 1992 Electron. Lett. 28 806

    [22]

    Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (New York: Academic Press) pp41-45

    [23]

    Finot C, Parmigiani F, Petropoulos P, Richardson D J 2006 Opt. Express 14 083161

  • [1]

    Fermann M E, Hartl I 2013 Nature Photon. 7 868

    [2]

    Killi A, Dörring J, Morgner U, Lederer M J, Frei J, Kopf D 2005 Opt. Express 13 061916

    [3]

    Cho S H, Bouma B E, Ippen E P, Fujimoto J G 1999 Opt. Lett. 24 06417

    [4]

    Yang J H, Guo C Y, Ruan S C, Ouyang D Q, Lin H Q, Wu Y M 2014 Chin. Phys. Lett. 31 024208

    [5]

    Luo Z C, Lin Z B, Li J Y, Zhu P F, Ning Q Y, Xing X B, Luo A P, Xu W C 2014 Chin. Phys. B 23 064203

    [6]

    Želudevičius J, Danilevičius R, Viskontas K, Rusteika N, Regelskis K 2013 Opt. Express 21 055338

    [7]

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201(in Chinese) [姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 63 184201]

    [8]

    Huang Z Y, Leng Y X, Dai Y 2014 Chin. Phys. B 23 124210

    [9]

    Fermann M E, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 266010

    [10]

    Kruglov V I, Peacock A C, Harvey J D, Dudley J M 2002 J. Opt. Soc. Am. B 19 03461

    [11]

    Chang G, Galvanauskas A, Winful H G, Norris T B 2004 Opt. Lett. 29 222647

    [12]

    Ilday F Ö, Buckley J R, Clark W G, Wise F W 2004 Phys. Rev. Lett. 92 213902

    [13]

    Oktem B,lgdr C, Ilday F Ö 2010 Nature Photon. 4 307

    [14]

    Bale B G, Wabnitz S 2010 Opt. Lett. 35 142466

    [15]

    Boscolo S, Turitsyn S K, Finot C 2012 Opt. Lett. 37 214531

    [16]

    Renninger W H, Chong A, Wise F W 2010 Phys. Rev. A 82 021805

    [17]

    Renninger W H, Chong A, Wise F W 2011 Opt. Express 19 2322496

    [18]

    Nie B, Pestov D, Wise F W, Dantus M 2011 Opt. Express 19 1312074

    [19]

    Lefrancois S, Liu C, Stock M L, Sosnowski T S, Galvanauskas A, Wise F W 2013 Opt. Lett. 38 0143

    [20]

    Shi J K, Chai L, Zhao X W, Li J, Liu B W, Hu M L, Li Y F, Wang Q Y 2014 Chin. J. Laser 41 0202001 (in Chinese) [石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月 2014 中国激光 41 0202001]

    [21]

    Kelly S M J 1992 Electron. Lett. 28 806

    [22]

    Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (New York: Academic Press) pp41-45

    [23]

    Finot C, Parmigiani F, Petropoulos P, Richardson D J 2006 Opt. Express 14 083161

  • [1] 张解放, 俞定国, 金美贞. 二维自相似变换理论和线怪波激发.  , 2022, 71(1): 014205. doi: 10.7498/aps.71.20211417
    [2] 张解放, 俞定国, 金美贞. (2+1)维Zakharov方程的自相似变换和线怪波簇激发.  , 2022, 71(8): 084204. doi: 10.7498/aps.71.20211181
    [3] 张解放, 金美贞, 胡文成. 非自治Kadomtsev-Petviashvili方程的自相似变换和二维怪波构造.  , 2020, 69(24): 244205. doi: 10.7498/aps.69.20200981
    [4] 李洪云, 尹妍妍, 王青, 王立飞. 平行电磁场中里德堡氢原子的自相似结构研究.  , 2015, 64(18): 180502. doi: 10.7498/aps.64.180502
    [5] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究.  , 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [6] 吴松荣, 周国华, 王金平, 许建平, 何圣仲. 多频率控制开关变换器的自相似和混频现象分析.  , 2014, 63(2): 028401. doi: 10.7498/aps.63.028401
    [7] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤.  , 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [8] 王思佳, 顾澄琳, 刘博文, 宋有建, 钱程, 胡明列, 柴路, 王清月. 利用非线性脉冲预整形实现脉冲快速自相似放大.  , 2013, 62(14): 140601. doi: 10.7498/aps.62.140601
    [9] 沈毅, 徐焕良. 加权网络权重自相似评判函数及其社团结构检测.  , 2010, 59(9): 6022-6028. doi: 10.7498/aps.59.6022
    [10] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学.  , 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [11] 廖龙光, 付虹, 傅秀军. 十二次对称准周期结构的自相似变换及准晶胞构造.  , 2009, 58(10): 7088-7093. doi: 10.7498/aps.58.7088
    [12] 邓一鑫, 涂成厚, 吕福云. 非线性偏振旋转锁模自相似脉冲光纤激光器的研究.  , 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [13] 赖小明, 卞保民, 杨 玲, 杨 娟, 卞 牛, 李振华, 贺安之. 非奇异宇宙的理想气体自相似模型.  , 2008, 57(12): 7955-7962. doi: 10.7498/aps.57.7955
    [14] 冯 杰, 徐文成, 刘伟慈, 李书贤, 刘颂豪. 高阶色散效应常系数Ginzburg-Landau方程自相似脉冲演化的解析分析.  , 2008, 57(8): 4978-4983. doi: 10.7498/aps.57.4978
    [15] 雷 霆, 涂成厚, 李恩邦, 李勇男, 郭文刚, 魏 岱, 朱 辉, 吕福云. 高能量无波分裂超短脉冲自相似传输的理论研究和数值模拟.  , 2007, 56(5): 2769-2775. doi: 10.7498/aps.56.2769
    [16] 冯 杰, 徐文成, 李书贤, 陈伟成, 宋 方, 申民常, 刘颂豪. 色散渐减光纤中Ginzburg-Landau方程的自相似脉冲演化的解析解.  , 2007, 56(10): 5835-5842. doi: 10.7498/aps.56.5835
    [17] 童永在, 王西安, 余本海, 胡雪惠. 电光效应的自相似性.  , 2006, 55(12): 6667-6672. doi: 10.7498/aps.55.6667
    [18] 钟锡华, 周岳明, 朱亚芬. 自相似时间信息的谱研究.  , 1991, 40(12): 1934-1941. doi: 10.7498/aps.40.1934
    [19] 钟锡华. 自相似结构的谱函数.  , 1990, 39(6): 59-66. doi: 10.7498/aps.39.59
    [20] 张珉, 陶瑞宝, 周世勋. 具有自相似结构的非均匀复合媒质质量分布的标度指数.  , 1988, 37(12): 1987-1992. doi: 10.7498/aps.37.1987
计量
  • 文章访问数:  5525
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-06
  • 修回日期:  2015-04-23
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map