搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉曼增益对高双折射光纤中暗孤子俘获的影响

闫青 贾维国 于宇 张俊萍 门克内木乐

引用本文:
Citation:

拉曼增益对高双折射光纤中暗孤子俘获的影响

闫青, 贾维国, 于宇, 张俊萍, 门克内木乐

Raman effect on dark soliton trapping in high birefringence fiber

Yan Qing, Jia Wei-Guo, Yu Yu, Zhang Jun-Ping, Menke Neimule
PDF
导出引用
  • 从高双折射光纤中含有拉曼增益的耦合非线性薛定谔方程出发, 利用拉格朗日方法, 推导出了暗孤子俘获的阈值, 并利用快速分步傅里叶变换, 模拟了孤子的两个正交偏振分量的演化, 对比了两种方法得到的阈值, 探究了暗孤子俘获受拉曼增益的影响. 研究发现解析解所得阈值比数值解偏小, 且群速度失配越小时, 二者符合得越好; 并且拉曼增益减小了暗孤子的俘获阈值, 当平行拉曼增益增大时, 俘获阈值减小加快.
    Not only the interaction between optical pulse and orbital electron but also the interaction between optical pulse and optical phonon needs to be considered when input pulse energy is large. The latter induces the simulated Raman scattering, thus generating the Raman gain. We analyze the effect of Raman gain, especially parallel Raman gain, on dark soliton trapping in high birefringence fiber by analytical method and numerical method. In the first part, we introduce some research results of soliton trapping obtained in recent years. In the second part, the coupled nonlinear Schrödinger equation including Raman gain is utilized for high birefringence fiber. The trapping threshold of dark soliton with considering the Raman gain is deduced by the Lagrangian approach when input pulse is the dark soliton pulse that the amplitude of two polarized components of the dark soliton are the same (see formula (26)). Fig. 1. shows the relation between threshold and parallel Raman gain according to formula (26) when group velocity mismatching coefficient values are 0.15, 0.3, and 0.5 (vertical Raman gains are all 0.1). In the third part, the propagation of the two orthogonal polarization components of dark soliton is simulated by the fractional Fourier transform method. Figures 2-4 show respectively dark soliton trapping with group velocity mismatching coefficient values of 0.15, 0.3 and 0.5. We consider three situations in which Raman gain is not included and the parallel Raman gains are 0.4 and 0.6 when vertical Raman gains are both 0.1 in different group velocity mismatching coefficient values. We obtain the threshold of dark soliton by numerical method under different conditions and analyze the figures. At the same time, we compare the analytical solution with the numerical solution and discuss the effect of Raman gain on dark soliton trapping. The last part focuses on our conclusion. It is found that the threshold which is obtained by analytical method is smaller than that from the numerical solution. The difference between the analytical and numerical dependences decreases with group velocity mismatching coefficient decreases. As a result, formula (26) is in good agreement with numerical data for small group velocity mismatching. The larger the group velocity mismatching, the larger the amplitude threshold of dark soliton is. It also shows that the amplitude threshold of dark soliton can be reduced due to Raman gain and the threshold is reduced faster with the increasing of Raman gain.
      通信作者: 贾维国, jwg1960@163.com
    • 基金项目: 国家自然科学基金(批准号: 61167004)和内蒙古自然科学基金(批准号: 2014MS0104)资助的课题.
      Corresponding author: Jia Wei-Guo, jwg1960@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61167004), and the Natural Science Foundation of Inner Mongolia, China (Grant No. 2014MS0104).
    [1]

    Agrawal G P 2010 Nonlinear Fiber Optics (2rd Ed.) (Boston: Academic Press) pp134-165

    [2]

    Islam M N, Poole C D, Gordon J P 1989 Opt. Lett. 14 1011

    [3]

    Skryabin D V, Gorbach A V 2007 Phys. Rev. A 76 053803

    [4]

    Gorbach A V, Skryabin D V 2007 Nat. Photon. 1 653

    [5]

    Travers J C, Taylor J R 2009 Opt. Lett. 34 115

    [6]

    He Y J, Mihalache D, Hu B 2010 Opt. Lett. 35 1716

    [7]

    Liu H Y, Dai Y T, Xu C, Wu J, Xu K, Li Y, Hong X B, Lin J T 2010 Opt. Lett. 35 4042

    [8]

    Wang W B, Yang H, Tang P H, Han F 2013 Opt. Ecpress 21 11215

    [9]

    Cheng C, Wang X, Fang Z, Shen B 2005 Appl. Phys. B 80 291

    [10]

    Zheng L, Tang Y 2010 Chin. Phys. B 19 044209

    [11]

    Zheng L, Tang Y 2009 J. Nonlinear Opt. Phys. 18 457

    [12]

    Liu B L, Jia W G, Wang Y P, Qiao H L, Wang X D, Menke N M L 2014 Acta Phys. Sin. 63 214207(in Chinese) [刘宝林, 贾维国, 王玉平, 乔海龙, 王旭东, 门克内木乐 2014 63 214207]

    [13]

    Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Acta Phys. Sin. 64 054207(in Chinese) [于宇, 贾维国, 闫青, 门克内木乐, 张俊萍 2015 64 054207]

    [14]

    Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Chin. Phys. B 24 084210

    [15]

    Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086

    [16]

    Agrawal G P 2010 Nonlinear Fiber Optics (2rd Ed.) (Boston: Academic Press) pp105-107

    [17]

    Satsuma J, Yajima N 1974 Progr. Theor. Phys. Suppl. 55 284

    [18]

    Kivshar Y S 1990 J. Opt. Soc. Am. B 7 2204

    [19]

    Anderson D, Lisak M 1985 Phys. Rev. A 32 2270

  • [1]

    Agrawal G P 2010 Nonlinear Fiber Optics (2rd Ed.) (Boston: Academic Press) pp134-165

    [2]

    Islam M N, Poole C D, Gordon J P 1989 Opt. Lett. 14 1011

    [3]

    Skryabin D V, Gorbach A V 2007 Phys. Rev. A 76 053803

    [4]

    Gorbach A V, Skryabin D V 2007 Nat. Photon. 1 653

    [5]

    Travers J C, Taylor J R 2009 Opt. Lett. 34 115

    [6]

    He Y J, Mihalache D, Hu B 2010 Opt. Lett. 35 1716

    [7]

    Liu H Y, Dai Y T, Xu C, Wu J, Xu K, Li Y, Hong X B, Lin J T 2010 Opt. Lett. 35 4042

    [8]

    Wang W B, Yang H, Tang P H, Han F 2013 Opt. Ecpress 21 11215

    [9]

    Cheng C, Wang X, Fang Z, Shen B 2005 Appl. Phys. B 80 291

    [10]

    Zheng L, Tang Y 2010 Chin. Phys. B 19 044209

    [11]

    Zheng L, Tang Y 2009 J. Nonlinear Opt. Phys. 18 457

    [12]

    Liu B L, Jia W G, Wang Y P, Qiao H L, Wang X D, Menke N M L 2014 Acta Phys. Sin. 63 214207(in Chinese) [刘宝林, 贾维国, 王玉平, 乔海龙, 王旭东, 门克内木乐 2014 63 214207]

    [13]

    Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Acta Phys. Sin. 64 054207(in Chinese) [于宇, 贾维国, 闫青, 门克内木乐, 张俊萍 2015 64 054207]

    [14]

    Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Chin. Phys. B 24 084210

    [15]

    Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086

    [16]

    Agrawal G P 2010 Nonlinear Fiber Optics (2rd Ed.) (Boston: Academic Press) pp105-107

    [17]

    Satsuma J, Yajima N 1974 Progr. Theor. Phys. Suppl. 55 284

    [18]

    Kivshar Y S 1990 J. Opt. Soc. Am. B 7 2204

    [19]

    Anderson D, Lisak M 1985 Phys. Rev. A 32 2270

  • [1] 沈星晨, 刘洋, 陈淇, 吕航, 徐海峰. 超快强激光场中原子分子的里德伯态激发.  , 2022, 71(23): 233202. doi: 10.7498/aps.71.20221258
    [2] 李森清, 张肖, 林机. 非局域非线性耦合器中暗孤子的传输.  , 2021, 70(18): 184206. doi: 10.7498/aps.70.20210275
    [3] 李维勤, 霍志胜, 蒲红斌. 电介质/半导体结构样品电子束感生电流瞬态特性.  , 2020, 69(6): 060201. doi: 10.7498/aps.69.20191543
    [4] 谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲. 电磁诱导透明暗孤子的耗散变分束缚分析.  , 2018, 67(6): 064207. doi: 10.7498/aps.67.20172567
    [5] 谢元栋. 各向异性海森伯自旋链中的高阶孤子.  , 2016, 65(20): 207501. doi: 10.7498/aps.65.207501
    [6] 朱坤占, 贾维国, 张魁, 于宇, 张俊萍. 拉曼增益和自陡峭效应对艾里脉冲传输特性的影响.  , 2016, 65(7): 074204. doi: 10.7498/aps.65.074204
    [7] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子.  , 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [8] 于宇, 贾维国, 闫青, 门克内木乐, 张俊萍. 拉曼散射与自陡峭效应对皮秒孤子传输特性的影响.  , 2015, 64(5): 054207. doi: 10.7498/aps.64.054207
    [9] 潘楠, 黄平, 黄龙刚, 雷鸣, 刘文军. 非均匀光纤中暗孤子传输特性研究.  , 2015, 64(9): 090504. doi: 10.7498/aps.64.090504
    [10] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响.  , 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [11] 李淑青, 杨光晔, 李禄. Hirota方程的怪波解及其传输特性研究.  , 2014, 63(10): 104215. doi: 10.7498/aps.63.104215
    [12] 刘宝林, 贾维国, 王玉平, 乔海龙, 王旭东, 门克内木乐. 色散条件下各向同性光纤中拉曼增益对光脉冲自陡峭的影响.  , 2014, 63(21): 214207. doi: 10.7498/aps.63.214207
    [13] 乔海龙, 贾维国, 王旭东, 刘宝林, 门克内木乐, 杨军, 张俊萍. 拉曼增益对双折射光纤中孤子传输特性的影响.  , 2014, 63(9): 094208. doi: 10.7498/aps.63.094208
    [14] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析.  , 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [15] 乔海龙, 贾维国, 刘宝林, 王旭东, 门克内木乐, 杨军, 张俊萍. 拉曼增益对孤子传输特性的影响.  , 2013, 62(10): 104212. doi: 10.7498/aps.62.104212
    [16] 张蔚曦, 佘彦超, 王登龙. 计及两体和三体作用下的二维凝聚体中的孤子特性.  , 2011, 60(7): 070514. doi: 10.7498/aps.60.070514
    [17] 高星辉, 杨振军, 周罗红, 郑一周, 陆大全, 胡巍. 非局域程度对空间暗孤子相互作用的影响.  , 2011, 60(8): 084213. doi: 10.7498/aps.60.084213
    [18] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用.  , 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
    [19] 张喜和, 姚治海, 李晓英, 李春明, 冯克成, 王兆民. 高保偏光纤前方受激拉曼散射光谱特性的研究.  , 2003, 52(4): 840-843. doi: 10.7498/aps.52.840
    [20] 佘卫龙, 王晓生, 何国岗, 陶孟仙, 林励平, 李荣基. 折射率改变为正的光折变晶体中形成一维光伏暗孤子.  , 2001, 50(11): 2166-2171. doi: 10.7498/aps.50.2166
计量
  • 文章访问数:  5350
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-20
  • 修回日期:  2015-05-06
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map