搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用破坏对称性的超导人造原子制备型四比特纠缠态

冷春玲 张英俏 计新

引用本文:
Citation:

利用破坏对称性的超导人造原子制备型四比特纠缠态

冷春玲, 张英俏, 计新

The -type four-particle entangled state generated by using superconducting artificial atoms with broken symmetry

Leng Chun-Ling, Zhang Ying-Qiao, Ji Xin
PDF
导出引用
  • 提出了利用在一维传输线共振器中的破坏对称性的超导人造原子来制备型四比特纠缠态的方案. 方案中所用到的型三能级人造原子不同于自然的原子, 它可以产生循环跃迁. 经过适当时间的相互作用和简单的操作, 可以得到想要制备的纠缠态. 由于人造原子的激发态和光子态被绝热消除, 所以该方案对于人造原子的自发辐射和传输线共振器的衰减是鲁棒的.
    We propose a scheme for generating a genuine -type four-particle entangled state of superconducting artificial atoms with broken symmetry by using one-dimensional transmission line resonator as a data bus. With the help of the Circuit quantum electrodynamics system composed of -type three-level artificial atoms and transmission line resonator, our scheme also has long coherence time and storage time. Meanwhile, the -type three-level artificial atom used in the scheme is different from natural atom and has cyclic transitions. Furthermore, our scheme is easy to control and flexible. Through a suitable choice of the Rabi frequencies and detunings of the classical fields, we can use this system to implement the selective coupling between two arbitrary qubits. After suitable interaction time and simple operations, the desired entangled state can be obtained. Since artificial atomic excited states and photonic states are adiabatically eliminated, our scheme is robust against the spontaneous emissions of artificial atoms and the decays of transmission line resonator. We also analyze the performance and the experimental feasibility of the scheme, and show that our scheme is feasible under existing experimental conditions.
      通信作者: 计新, jixin@ybu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11464046)、国家自然科学基金理论物理专项基金(批准号:11347122)和吉林省科技发展计划项目青年科研基金(批准号:20130522148JH)资助的课题.
      Corresponding author: Ji Xin, jixin@ybu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11464046), the National Natural Science Foundation of China-the Special Fund of Theoretical Physics (Grant No. 11347122) and the Science and Technology Development Foundation of Jilin Province for Youths, China (Grant No. 20130522148JH).
    [1]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [2]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [3]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656

    [4]

    Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392

    [5]

    Vidal G 2003 Phys. Rev. Lett. 91 147902

    [6]

    Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhong H Y 2007 Chin. Phys. 16 2149

    [7]

    Zheng S B 2001 Phys. Rev. Lett. 87 230404

    [8]

    Guo G C, Zhang Y S 2002 Phys. Rev. A 65 054302

    [9]

    Bertet P, Osnaghi S, Milman P, Auffeves A, Maioli P, Brune M, Raimond J M, Haroche S 2002 Phys. Rev. Lett. 88 143601

    [10]

    Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R, Wineland D J 2005 Nature 438 639

    [11]

    Cho J, Lee H W 2005 Phys. Rev. Lett. 95 160501

    [12]

    Zou X B, Shu J, Guo G C 2006 Phys. Rev. A 73 054301

    [13]

    Hume D B, Chou C W, Rosenband T, Wineland D J 2009 Phys. Rev. A 80 052302

    [14]

    Shao X Q, Chen L, Zhang S, Zhao Y F, Yeon K H 2010 Europhys. Lett. 90 50003

    [15]

    Yu H Y, Luo Y, Yao W 2011 Phys. Rev. A 84 032337

    [16]

    Chen X Y, Yu P, Jiang L Z, Tian M Z 2013 Phys. Rev. A 87 012322

    [17]

    Greenberger D M, Horne M A, Zeilinger A 1989 Bell's Theorem, Quantum Theory and Conceptions of the Universe (Netherlands: Springer) 37 69

    [18]

    Dr W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314

    [19]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [20]

    Yeo Y, Chua W K 2006 Phys. Rev. Lett. 96 060502

    [21]

    Wu C F, Yeo Y, Kwek L C, Oh C H 2007 Phys. Rev. A 75 032332

    [22]

    Lin S, Wen Q Y, Gao F, Zhu F C 2008 Phys. Rev. A 78 064304

    [23]

    Tokunaga Y, Yamamoto T, Koashi M, Nobuyuki L 2005 Phys. Rev. A 71 030301

    [24]

    Wang H F, Zhang S 2009 Phys. Rev. A 79 042336

    [25]

    Shen H W, Wang H F, Ji X, Zhang S 2009 Chin. Phys. B 18 3706

    [26]

    Wang X W, Yang G J 2008 Phys. Rev. A 78 024301

    [27]

    Shi Y L, Mei F, Yu Y F, Feng X L, Zhang Z M 2012 Quant. Info. Proc. 11 229

    [28]

    Zhang Y J, Xia Y J, Man Z X, Guo G C 2009 Sci. China Series G: Phys. Mech. Astron. 52 700

    [29]

    Gao G L, Song F Q, Huang S S, Wang H, Yuan X Z, Wang M F, Jiang N Q 2012 Chin. Phys. B 21 44209

    [30]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [31]

    You J Q, Nori F 2011 Nature 474 589

    [32]

    DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2010 Nature 467 574

    [33]

    Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502

    [34]

    Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2006 Phys. Rev. A 74 042318

    [35]

    Zhong Y P, Li C Y, Wang H H, Chen Y 2013 Chin. Phys. B 22 110313

    [36]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [37]

    DiCarlo L, Chow J M, Gambetta J M, Bishop Lev S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240

    [38]

    Liu Y X, You J Q, Wei L F, Sun C P, Nori F 2005 Phys. Rev. Lett. 95 087001

    [39]

    Sun C P, Liu Y X, Wei L F, Nori F 2005 arXiv: quant-ph/050611

    [40]

    Liu Y X, Sun C P, Nori F 2006 Phys. Rev. A 74 052321

    [41]

    Leek P J, Baur M, Fink J M, Bianchetti R, Steffen L, Filipp S, Wallraff A 2010 Phys. Rev. Lett. 104 100504

  • [1]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [2]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [3]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656

    [4]

    Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392

    [5]

    Vidal G 2003 Phys. Rev. Lett. 91 147902

    [6]

    Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhong H Y 2007 Chin. Phys. 16 2149

    [7]

    Zheng S B 2001 Phys. Rev. Lett. 87 230404

    [8]

    Guo G C, Zhang Y S 2002 Phys. Rev. A 65 054302

    [9]

    Bertet P, Osnaghi S, Milman P, Auffeves A, Maioli P, Brune M, Raimond J M, Haroche S 2002 Phys. Rev. Lett. 88 143601

    [10]

    Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R, Wineland D J 2005 Nature 438 639

    [11]

    Cho J, Lee H W 2005 Phys. Rev. Lett. 95 160501

    [12]

    Zou X B, Shu J, Guo G C 2006 Phys. Rev. A 73 054301

    [13]

    Hume D B, Chou C W, Rosenband T, Wineland D J 2009 Phys. Rev. A 80 052302

    [14]

    Shao X Q, Chen L, Zhang S, Zhao Y F, Yeon K H 2010 Europhys. Lett. 90 50003

    [15]

    Yu H Y, Luo Y, Yao W 2011 Phys. Rev. A 84 032337

    [16]

    Chen X Y, Yu P, Jiang L Z, Tian M Z 2013 Phys. Rev. A 87 012322

    [17]

    Greenberger D M, Horne M A, Zeilinger A 1989 Bell's Theorem, Quantum Theory and Conceptions of the Universe (Netherlands: Springer) 37 69

    [18]

    Dr W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314

    [19]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [20]

    Yeo Y, Chua W K 2006 Phys. Rev. Lett. 96 060502

    [21]

    Wu C F, Yeo Y, Kwek L C, Oh C H 2007 Phys. Rev. A 75 032332

    [22]

    Lin S, Wen Q Y, Gao F, Zhu F C 2008 Phys. Rev. A 78 064304

    [23]

    Tokunaga Y, Yamamoto T, Koashi M, Nobuyuki L 2005 Phys. Rev. A 71 030301

    [24]

    Wang H F, Zhang S 2009 Phys. Rev. A 79 042336

    [25]

    Shen H W, Wang H F, Ji X, Zhang S 2009 Chin. Phys. B 18 3706

    [26]

    Wang X W, Yang G J 2008 Phys. Rev. A 78 024301

    [27]

    Shi Y L, Mei F, Yu Y F, Feng X L, Zhang Z M 2012 Quant. Info. Proc. 11 229

    [28]

    Zhang Y J, Xia Y J, Man Z X, Guo G C 2009 Sci. China Series G: Phys. Mech. Astron. 52 700

    [29]

    Gao G L, Song F Q, Huang S S, Wang H, Yuan X Z, Wang M F, Jiang N Q 2012 Chin. Phys. B 21 44209

    [30]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [31]

    You J Q, Nori F 2011 Nature 474 589

    [32]

    DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2010 Nature 467 574

    [33]

    Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502

    [34]

    Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2006 Phys. Rev. A 74 042318

    [35]

    Zhong Y P, Li C Y, Wang H H, Chen Y 2013 Chin. Phys. B 22 110313

    [36]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [37]

    DiCarlo L, Chow J M, Gambetta J M, Bishop Lev S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240

    [38]

    Liu Y X, You J Q, Wei L F, Sun C P, Nori F 2005 Phys. Rev. Lett. 95 087001

    [39]

    Sun C P, Liu Y X, Wei L F, Nori F 2005 arXiv: quant-ph/050611

    [40]

    Liu Y X, Sun C P, Nori F 2006 Phys. Rev. A 74 052321

    [41]

    Leek P J, Baur M, Fink J M, Bianchetti R, Steffen L, Filipp S, Wallraff A 2010 Phys. Rev. Lett. 104 100504

  • [1] 江翠, 李家锐, 亓迪, 张莲莲. 具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响.  , 2024, 73(20): 207301. doi: 10.7498/aps.73.20240871
    [2] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象.  , 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [3] 蔡建乐, 史生水. Chetaev型非完整系统Mei对称性的共形不变性与守恒量.  , 2012, 61(3): 030201. doi: 10.7498/aps.61.030201
    [4] 陈蓉, 许学军. 单面Chetaev型非完整系统的共形不变性、Noether对称性和Lie对称性.  , 2012, 61(14): 141101. doi: 10.7498/aps.61.141101
    [5] 杨新芳, 孙现亭, 王肖肖, 张美玲, 贾利群. 变质量Chetaev型非完整系统Appell方程的Mei对称性和Mei守恒量.  , 2011, 60(11): 111101. doi: 10.7498/aps.60.111101
    [6] 贾利群, 张耀宇, 杨新芳, 崔金超, 解银丽. Lagrange系统Mei对称性的Ⅲ型结构方程和Ⅲ型Mei守恒量.  , 2010, 59(5): 2939-2941. doi: 10.7498/aps.59.2939
    [7] 李元成, 夏丽莉, 王小明. 具有非Chetaev型非完整约束的机电系统的统一对称性.  , 2009, 58(10): 6732-6736. doi: 10.7498/aps.58.6732
    [8] 贾利群, 崔金超, 张耀宇, 罗绍凯. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量.  , 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [9] 张毅, 葛伟宽. 非Chetaev型非完整系统的Lagrange对称性与守恒量.  , 2009, 58(11): 7447-7451. doi: 10.7498/aps.58.7447
    [10] 胡楚勒. 一类非完整系统运动微分方程的Lie对称性与Hojman型守恒量.  , 2007, 56(7): 3675-3677. doi: 10.7498/aps.56.3675
    [11] 荆宏星, 李元成, 夏丽莉. 变质量单面完整约束系统Lie对称性的摄动与广义Hojman型绝热不变量.  , 2007, 56(6): 3043-3049. doi: 10.7498/aps.56.3043
    [12] 张 毅. 相空间中离散力学系统对称性的摄动与Hojman型绝热不变量.  , 2007, 56(4): 1855-1859. doi: 10.7498/aps.56.1855
    [13] 贾利群, 郑世旺, 张耀宇. 事件空间中非Chetaev型非完整系统的Mei对称性与Mei守恒量.  , 2007, 56(10): 5575-5579. doi: 10.7498/aps.56.5575
    [14] 张 毅, 范存新, 梅凤翔. Lagrange系统对称性的摄动与Hojman型绝热不变量.  , 2006, 55(7): 3237-3240. doi: 10.7498/aps.55.3237
    [15] 周青春, 祝世宁. Λ型三能级原子与数态单模光场互作用系统的纠缠特性.  , 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [16] 戴宏毅, 陈平形, 梁林梅, 李承祖. 利用Λ型原子与光场的纠缠态传送腔场的奇偶相干态的叠加态.  , 2004, 53(2): 441-444. doi: 10.7498/aps.53.441
    [17] 钱贤民, 楼森岳. (2+1)维离散型Toda方程的对称性.  , 1996, 45(5): 721-728. doi: 10.7498/aps.45.721
    [18] 孙久勋, 章立源. s+d混合波对称性下联合模型的超导电性.  , 1996, 45(11): 1913-1920. doi: 10.7498/aps.45.1913
    [19] 张宗烨, 厉光烈. 超核激发态的对称性分类.  , 1977, 26(6): 467-476. doi: 10.7498/aps.26.467
    [20] 张宗烨, 厉光烈. 超核激发态的对称性分类.  , 1976, 25(2): 172-174. doi: 10.7498/aps.25.172
计量
  • 文章访问数:  5207
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-12
  • 修回日期:  2015-04-08
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map